Aide pour les futurs mathématiciens
 
AccueilAccueil  PortailPortail  FAQFAQ  RechercherRechercher  S'enregistrerS'enregistrer  Connexion  

Partagez | 
 

 ex 74 page 190 almofid

Voir le sujet précédent Voir le sujet suivant Aller en bas 
AuteurMessage
moncefzizo
Maître


Masculin Nombre de messages : 72
Age : 25
Date d'inscription : 01/09/2007

MessageSujet: ex 74 page 190 almofid   Mer 25 Mar 2009, 14:11

a et b sont des nombres réels et f fonction tel que
f(x) = x²+ax +b
trouvez a et b tel que (D)=2x-7 et (D')=3
sont deux tangentes de (Cf)
Revenir en haut Aller en bas
yugayoub
Expert sup


Masculin Nombre de messages : 842
Age : 24
Localisation : Cimetiere famillial: la maison
Date d'inscription : 13/07/2008

MessageSujet: Re: ex 74 page 190 almofid   Jeu 26 Mar 2009, 19:34

saluut mn frere bn voilà une reponce que mathema ma envoyer
Citation :
salut !!!
Enoncé:
soit f la fonction definie par; f(x)=x²+bx+c

sachant que y=2x-7 est une tangente de (Cf) et que x=7 et l'axe de symetrie pour (cf) determiner b et c.

Reponse:

Rappel:
la fonction gMad-> mx²+nx+p (m;n:p)£IR*^3 est une fonction parabole (ra2soho E):

E(-n/(2m) ; -Delta/(4m)) (dela=n²-4mp) donc elle est symetrique par rapport a l'axe x=-n/(2m)....
Reponse immediat!!!:

donc on a f(x)=x²+bx+c donc (Cf) est symetrique pa rapport à l'axe:

x=-b/2 d'ou d'aprés l'énonce on a : -b/2=7 ===> b=-14.

il manque c.

soit y=2x-7 la droite tangente en (Cf) en point A(h;f(h)) donc:

on a f'(x)=2x+b alors y=f'(h)(x-h)+f(h)

==> 2x-7=(2h-14)(x-h)+h²-14h+c (car b=-14)

==> 2x-7 = (2h-14)x - 2h²+14h + h²-14h+c

==> 2x-7=(2h-14)x - (h²-c)

==> 2=2h-14 et h²-c=7

==> h=8 et h²-c=7

==> c=64-7 = 57
Conclusion:

alors f(x) = x² -14x + 57

CQFD
________________________________________________________________
lahoucine
Revenir en haut Aller en bas
http://ayoubbenmoussa92@gmail.com
houssa
Expert sup


Masculin Nombre de messages : 1693
Age : 60
Date d'inscription : 17/11/2008

MessageSujet: Re: ex 74 page 190 almofid   Jeu 26 Mar 2009, 19:50

salam

la courbe de f est bien une parabole P

la droite D est tangente à P <==> x²+ax+b = 2x-7 admet une solution double .

donc son delta = 0 <==> (a-2)²-4(b+7) =0
<==> (a-2)² -28 = 4b

de même pour D' : x²+ax+b = 3 doit avoir une racine double

<==> a² - 4(b-3) =0 <==> a²+12 = 4b

D'où : (a-2)² -28 = a²+12 ======> a=-9 et b = 93/4


............................. sauf erreur

.
Revenir en haut Aller en bas
Contenu sponsorisé




MessageSujet: Re: ex 74 page 190 almofid   Aujourd'hui à 03:56

Revenir en haut Aller en bas
 
ex 74 page 190 almofid
Voir le sujet précédent Voir le sujet suivant Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» eso page.com
» http://www.conso.net/page/''inventions))
» "cette page contient ..."
» Une page d'accueil écolo, Googecolo
» Convertir une page-web html en pdf?

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum des amateurs de maths :: Lycée :: Première-
Sauter vers: