Aide pour les futurs mathématiciens
 
AccueilAccueil  PortailPortail  FAQFAQ  RechercherRechercher  S'enregistrerS'enregistrer  Connexion  

Partagez | 
 

 Problem 2 IMO 2009 (Day1)

Voir le sujet précédent Voir le sujet suivant Aller en bas 
AuteurMessage
samir
Administrateur
avatar

Nombre de messages : 1839
Localisation : www.mathematiciens.tk
Date d'inscription : 23/08/2005

MessageSujet: Problem 2 IMO 2009 (Day1)   Jeu 16 Juil 2009, 18:03


_________________
وتوكل على الحي الذي لا يموت وسبح بحمده
Revenir en haut Aller en bas
http://mathsmaroc.jeun.fr
ephemere
Féru


Nombre de messages : 43
Date d'inscription : 14/10/2006

MessageSujet: Re: Problem 2 IMO 2009 (Day1)   Sam 05 Sep 2009, 14:43

Je ne fais pas de dessin ici, mais je vous conseille dans faire un pour suivre plus facilement.


Dans le triangle BPQ, M est le milieu du côté [PQ] et K est le milieu du côté [PB]. Donc la droite MK est parallèle à la droite BQ=AQ. Donc les angles alternes internes AQM et KMQ sont de même amplitude.

De plus, comme la droite PQ est tangente en M au cercle circonscrit au triangle KLM, l'angle KMQ a la même amplitude que l'angle KLM.

Par transitivité de l'égalité, les angles AQM=AQP et KLM sont donc de même amplitude.

De façon analogue, on prouve que les angles APQ et LKM sont de même amplitude.

Au total, les triangles AQP et MLK sont semblables. Mais alors |AP|/|AQ|=|MK|/|ML|.

Or, en revenant au triangle BPQ, on a aussi |MK|=|QB|/2.

De façon analogue, on a aussi |ML|=|PC|/2.

En combinant toutes ces égalités, on obtient facilement |AP|/|AQ|=|QB|/|PC|, puis |PA|*|PC|=|QB|*|QA|. Cette dernière égalité signifie que les points P et Q ont la même puissance par rapport au cercle circonscrit au triangle ABC. Ceci implique que |OP|=|OQ|, puisque O est le centre de ce cercle.
Revenir en haut Aller en bas
 
Problem 2 IMO 2009 (Day1)
Voir le sujet précédent Voir le sujet suivant Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» Problem 1 IMO 2009 (Day 1)
» Problem 6 IMO 2009 (Day2)
» BILAN HIVER 2008/2009
» Massif du Pilat (départements 07-42-43-69), saison 2008/2009
» 2009: Vers 16h00 - Observation près de Nantes - (44)

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum des amateurs de maths :: Olympiades :: Geométrie-
Sauter vers: