Aide pour les futurs mathématiciens
 
AccueilAccueil  PortailPortail  FAQFAQ  RechercherRechercher  S'enregistrerS'enregistrer  Connexion  

Partagez | 
 

 Je bloque

Voir le sujet précédent Voir le sujet suivant Aller en bas 
AuteurMessage
midouw
Maître


Masculin Nombre de messages : 156
Age : 22
Localisation : Kech
Date d'inscription : 22/02/2009

MessageSujet: Je bloque   Dim 27 Sep 2009, 19:30

Bonjour ,
Voila j'ai déjà passé 3h sur ces exos et rien n'apparaît Mad
Résoudre dans R
- V(x+2+V(x-2)) + V(x-1+2V(x-2)) = 5
DQ
- (j'avais posté le mauvais exo désolé ..)
(A(x,y) e R+*) : y<x<1 => x/y < [x+1-V(x²+1)]/[y+1-V(y²+1)


Dernière édition par midouw le Dim 27 Sep 2009, 20:37, édité 2 fois
Revenir en haut Aller en bas
sweet-mounir
Maître


Masculin Nombre de messages : 83
Age : 24
Date d'inscription : 16/05/2009

MessageSujet: Re: Je bloque   Dim 27 Sep 2009, 19:39

V = racine??????
Revenir en haut Aller en bas
midouw
Maître


Masculin Nombre de messages : 156
Age : 22
Localisation : Kech
Date d'inscription : 22/02/2009

MessageSujet: Re: Je bloque   Dim 27 Sep 2009, 19:42

comme toujours wé
Revenir en haut Aller en bas
soukki
Maître


Féminin Nombre de messages : 145
Age : 23
Localisation : Casa
Date d'inscription : 22/03/2009

MessageSujet: Re: Je bloque   Dim 27 Sep 2009, 20:13

stp est ce que t'es sur de l'énoncé prsk lorsque je remplace n par 2 je trouve 3 non pas 5
Revenir en haut Aller en bas
houssam110
Expert sup


Masculin Nombre de messages : 860
Age : 23
Localisation : {Casa} U {Sefrou}
Date d'inscription : 19/04/2009

MessageSujet: Re: Je bloque   Dim 27 Sep 2009, 20:24

oué c faux on a 2 £ D et on trouve 3 et po 5
je crois que la question est resoudre dans IR et po DQ nece po?
Revenir en haut Aller en bas
midouw
Maître


Masculin Nombre de messages : 156
Age : 22
Localisation : Kech
Date d'inscription : 22/02/2009

MessageSujet: Re: Je bloque   Dim 27 Sep 2009, 20:36

Désolé vous avez raison la première résoudre dans R et la seconde démontrer
Revenir en haut Aller en bas
majdouline
Expert sup


Féminin Nombre de messages : 1151
Age : 23
Localisation : Ø
Date d'inscription : 04/01/2009

MessageSujet: Re: Je bloque   Dim 27 Sep 2009, 20:53

bonsoir....
V(x-1+2V(x-2))=V(V(x-2)+1)²=V(x-2)+1
donc l'équation devient:
V(x+2+V(x-2))+V(x-2)=4
V(x-2)=a alors ça devient:
V(a²+4+a)+a=4
V(a²+4+a)=4-a
--->a²+4+a=(4-a)²=a²-8a+16
<=>a=4/3
et on a V(x-2)=a alors x=34/9


Dernière édition par majdouline le Dim 27 Sep 2009, 21:48, édité 2 fois
Revenir en haut Aller en bas
midouw
Maître


Masculin Nombre de messages : 156
Age : 22
Localisation : Kech
Date d'inscription : 22/02/2009

MessageSujet: Re: Je bloque   Dim 27 Sep 2009, 21:17

juste une petite correction : a=V(x-2) et non pas a=x-2

a=4/3
V(x-2)=4/3
x-2=16/9
x=34/9

Sinon belle démo majdouline , vois si tu peux aussi faire le second Smile
Revenir en haut Aller en bas
majdouline
Expert sup


Féminin Nombre de messages : 1151
Age : 23
Localisation : Ø
Date d'inscription : 04/01/2009

MessageSujet: Re: Je bloque   Lun 28 Sep 2009, 14:55

BONjour mehdi...
pour le deuxième.... l'inégalité est fausse prend x=1/2 et y=1/3 comme contre exemple...
alors j' propose l'inégalité correcte:
soit x et y des réels positifs tel que y<x alors:
[x+1-V(x²+1)]/[y+1-V(y²+1)<x/y
c simple!!! Wink
Revenir en haut Aller en bas
midouw
Maître


Masculin Nombre de messages : 156
Age : 22
Localisation : Kech
Date d'inscription : 22/02/2009

MessageSujet: Re: Je bloque   Lun 28 Sep 2009, 18:41

tu peux poster la démo de l'équation correcte ?
Revenir en haut Aller en bas
majdouline
Expert sup


Féminin Nombre de messages : 1151
Age : 23
Localisation : Ø
Date d'inscription : 04/01/2009

MessageSujet: Re: Je bloque   Lun 28 Sep 2009, 20:28

bonsoir....
x²+y²>2xy<=>x²+y²+x²y²+1>2xy+x²y²+1
<=>(x²+1)(y²+1)>(xy+1)²
tout est positif alors:
V[(x²+1)(y²+1)]>xy+1
<=>2xyV[(x²+1)(y²+1)]>2x²y²+2xy(on a multiplié le tt par 2xy)
<=>-2xy>2x²y²-2xyV[(x²+1)(y²+1)]
<=>x²+y²-2xy>x²+y²+2x²y²-2xyV[(x²+1)(y²+1)]
<=>(x-y)²>(xV(y²+1)-yV(x²+1))²
------------------------------------------------------------
on a x>y alors x²y²+x²>x²y²+y²
<=>xV(y²+1)>yV(x²+1)
donc xV(y²+1)-yV(x²+1>0
on a :(x-y)²>(xV(y²+1)-yV(x²+1))²
tous est positif alors:
x-y>xV(y²+1)-yV(x²+1)
<=>x-xV(y²+1)>y-yV(x²+1)
<=>x-xV(y²+1)+xy>y-yV(x²+1)+xy
<=>x(1-V(y²+1)+y)>y(1-V(x²+1)+x)
tt est positif alors:
x/y>[x+1-V(x²+1)]/[y+1-V(y²+1)
Revenir en haut Aller en bas
midouw
Maître


Masculin Nombre de messages : 156
Age : 22
Localisation : Kech
Date d'inscription : 22/02/2009

MessageSujet: Re: Je bloque   Mar 29 Sep 2009, 13:33

pas si facile que ça ^^
Revenir en haut Aller en bas
Contenu sponsorisé




MessageSujet: Re: Je bloque   Aujourd'hui à 10:12

Revenir en haut Aller en bas
 
Je bloque
Voir le sujet précédent Voir le sujet suivant Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» L'ordinateur se bloque puis rame !
» Je bloque sur cette phrase (exo grammaire sur la condition)
» Google bloque l'accés aux sites sur les ovnis
» L'oestrogene bloque le système immunitaire.
» La sécurité enfants bloque mon lave-linge

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum des amateurs de maths :: Lycée :: Première-
Sauter vers: