Aide pour les futurs mathématiciens
 
AccueilAccueil  PortailPortail  RechercherRechercher  S'enregistrerS'enregistrer  Connexion  

Partagez
 

 Limite en 0 de racine(x-racine (x))

Aller en bas 
AuteurMessage
L
Expert sup
L

Masculin Nombre de messages : 1558
Age : 28
Date d'inscription : 03/09/2007

Limite en 0 de racine(x-racine (x)) Empty
MessageSujet: Limite en 0 de racine(x-racine (x))   Limite en 0 de racine(x-racine (x)) EmptyJeu 06 Oct 2011, 06:31

Tout est dans le titre

sauf erreur
Revenir en haut Aller en bas
Ali Zulfikar
Féru
Ali Zulfikar

Masculin Nombre de messages : 64
Age : 33
Date d'inscription : 25/03/2011

Limite en 0 de racine(x-racine (x)) Empty
MessageSujet: Re: Limite en 0 de racine(x-racine (x))   Limite en 0 de racine(x-racine (x)) EmptyJeu 06 Oct 2011, 08:19

L a écrit:
Tout est dans le titre

sauf erreur

Avant de vous lancer tête baissée dans les calculs ....
Il importe de chercher d'abord le Domaine de Définition de cette application ..... et partant de là et avec un peu de " jugeotte " , vous décélerez un GROOOOOOS PIEEEEEEEEGE classique !!!

Domaine de Définition .
On doit d'abord avoir x>=0 puis x-rac(x)>=0
par conséquent x>=0 ET x>=rac(x)
Après simplification on trouvera Df={0} union [1;+oo[ .

Partant de là , à Vous de répondre et déceler le PIEGE .....
Revenir en haut Aller en bas
nmo
Expert sup


Masculin Nombre de messages : 2246
Age : 26
Localisation : Elgara
Date d'inscription : 29/10/2009

Limite en 0 de racine(x-racine (x)) Empty
MessageSujet: Re: Limite en 0 de racine(x-racine (x))   Limite en 0 de racine(x-racine (x)) EmptyVen 07 Oct 2011, 17:13

Ali Zulfikar a écrit:
L a écrit:
Tout est dans le titre
sauf erreur
Avant de vous lancer tête baissée dans les calculs ....
Il importe de chercher d'abord le Domaine de Définition de cette application ..... et partant de là et avec un peu de " jugeotte " , vous décélerez un GROOOOOOS PIEEEEEEEEGE classique !!!
Domaine de Définition .
On doit d'abord avoir x>=0 puis x-rac(x)>=0
par conséquent x>=0 ET x>=rac(x)
Après simplification on trouvera Df={0} union [1;+oo[ .
Partant de là , à Vous de répondre et déceler le PIEGE .....
f n'et pas définie au voisinage de 0.
Par conséquant, la fonction proposée n'a pas de limite lorsque x tend vers 0.
Revenir en haut Aller en bas
Contenu sponsorisé




Limite en 0 de racine(x-racine (x)) Empty
MessageSujet: Re: Limite en 0 de racine(x-racine (x))   Limite en 0 de racine(x-racine (x)) Empty

Revenir en haut Aller en bas
 
Limite en 0 de racine(x-racine (x))
Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» Racine précise à l'aide d'Euclide
» limite defi
» La limite des certitudes
» Oenanthe safranée / pempiz / hemlock water-dropwort
» Primitives de (sqrt(2x + 1))/(4x + 5) et (x^3)/((x^4 - 1)^2)

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum des amateurs de maths :: Lycée :: Terminale-
Sauter vers: