Aide pour les futurs mathématiciens
 
AccueilAccueil  PortailPortail  FAQFAQ  RechercherRechercher  S'enregistrerS'enregistrer  Connexion  

Partagez | 
 

 svp! c important pr moi!!

Voir le sujet précédent Voir le sujet suivant Aller en bas 
AuteurMessage
ran mori
Habitué


Féminin Nombre de messages : 17
Age : 22
Date d'inscription : 11/10/2011

MessageSujet: svp! c important pr moi!!   Mar 04 Déc 2012, 22:55

Embarassed salut tt le monde!! pouvez vs m'aider a apliquer l'IAF ds cet exo parcequ'on la pas fait en classe!! voilà l'exo:
prouver en utilisant l'IAF que:
qq soit n appartenant a N*
1/2(n+1)^3/2<1/vn-1/v(n+1)<1/2n^3/2

^: a la puissance de
v:racine de

j'attend vos reponses!!
amicalement!
Revenir en haut Aller en bas
haiki55
Maître


Masculin Nombre de messages : 121
Age : 27
Date d'inscription : 22/09/2010

MessageSujet: Re: svp! c important pr moi!!   Mer 05 Déc 2012, 10:04

Bonjour

Soit dans IN* .
Considérons la fonction f définie par f(x)=1/Vx (avec v : racine carrée de ) .
f est continue sur [n,n+1] (à justifier) et f est dérivable sur ]n,n+1[ (à justifier). D'après le théorème des accroissements finis , il existe c dans ]n,n+1[ tel que f(n+1)-f(n)=((n+1)-n).f'(c).
Or pour tout x>0,f'(x)=-1/2.x^(3/2) (à justifier) . Donc f(n)-f(n+1)=-f'(c)=1/2.c^(3/2) , soit 1/vn - 1/v(n+1) =1/2.c^(3/2) .
De la double inégalité n<c<n+1 , on déduit que 1/2.(n+1)^(3/2) < 1/2.c^(3/2) < 1/2.n^(3/2) (à justifier) .
Par suite 1/2.(n+1)^(3/2) < 1/vn - 1/v(n+1) < 1/2.n^(3/2) .

Revenir en haut Aller en bas
ran mori
Habitué


Féminin Nombre de messages : 17
Age : 22
Date d'inscription : 11/10/2011

MessageSujet: Re: svp! c important pr moi!!   Lun 10 Déc 2012, 16:59

merci bcp haiki5 Smile)
Revenir en haut Aller en bas
Contenu sponsorisé




MessageSujet: Re: svp! c important pr moi!!   

Revenir en haut Aller en bas
 
svp! c important pr moi!!
Voir le sujet précédent Voir le sujet suivant Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» Sondage TRES IMPORTANT avant ce 3 Novembre : ARTE débat chasseurs- environnement
» pourquoi l'art est-il si important?
» Débat :"pourquoi le sacrement de confession est important ?"
» Présentation: un espace du forum trés important
» L'événement le plus important du XXè siècle

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum des amateurs de maths :: Lycée :: Terminale-
Sauter vers: