| DS | |
|
+5X----!----X mehdibouayad20 ? mounia* shinelookat 9 participants |
Auteur | Message |
---|
shinelookat Maître
Nombre de messages : 104 Age : 34 Localisation : Tours, France Date d'inscription : 05/03/2008
| Sujet: DS Mer 29 Oct 2008, 17:47 | |
| | |
|
| |
mounia* Expert grade2
Nombre de messages : 320 Age : 33 Localisation : temara Date d'inscription : 24/09/2007
| Sujet: Re: DS Mer 29 Oct 2008, 21:10 | |
| merci bc pour le partage
(mais la feuille è tro grande j'arive po a la copier) | |
|
| |
? Expert sup
Nombre de messages : 583 Age : 32 Date d'inscription : 27/08/2008
| Sujet: Re: DS Jeu 30 Oct 2008, 12:20 | |
| | |
|
| |
mehdibouayad20 Expert sup
Nombre de messages : 1702 Age : 33 Localisation : Fez City Date d'inscription : 15/12/2007
| Sujet: Re: DS Ven 31 Oct 2008, 13:20 | |
| | |
|
| |
X----!----X Maître
Nombre de messages : 87 Age : 32 Localisation : Cherche pas a savoir Date d'inscription : 29/10/2008
| Sujet: Re: DS Ven 31 Oct 2008, 13:49 | |
| merci l3ezz lundi je poste le mien | |
|
| |
Itri Maître
Nombre de messages : 207 Age : 33 Date d'inscription : 04/11/2007
| Sujet: Re: DS Lun 03 Nov 2008, 21:38 | |
| | |
|
| |
shinelookat Maître
Nombre de messages : 104 Age : 34 Localisation : Tours, France Date d'inscription : 05/03/2008
| Sujet: Re: DS Mar 04 Nov 2008, 00:50 | |
| | |
|
| |
N!WoX Habitué
Nombre de messages : 20 Age : 33 Date d'inscription : 30/06/2008
| Sujet: Re: DS Mar 04 Nov 2008, 11:58 | |
| Merci fréro , une bonne note incha'alah | |
|
| |
shinelookat Maître
Nombre de messages : 104 Age : 34 Localisation : Tours, France Date d'inscription : 05/03/2008
| Sujet: Re: DS Mar 04 Nov 2008, 14:35 | |
| | |
|
| |
mathboy Expert grade2
Nombre de messages : 374 Age : 33 Date d'inscription : 15/12/2006
| Sujet: Re: DS Mer 05 Nov 2008, 12:22 | |
| | |
|
| |
mathboy Expert grade2
Nombre de messages : 374 Age : 33 Date d'inscription : 15/12/2006
| Sujet: Re: DS Mar 11 Nov 2008, 13:36 | |
| saluT Mr ShineLooKaT tu peux poster la reponse pour cette question : Merci d'Avance | |
|
| |
spiderccam Expert sup
Nombre de messages : 584 Age : 33 Date d'inscription : 27/10/2007
| Sujet: Re: DS Mar 11 Nov 2008, 18:12 | |
| fallait remarquer que : fn(x) est une suite geometrique de raison x
donc fn(x)= x(1-x^n)/(1-x) - 1
or on a fn a pour solution unique alpha n
donc alpha (n) ( 1 - alpha(n)^n) / 1- alpha(n)= 1
donc alpha(n)^n+1= 2 alpha(n) - 1 (sauf erreur)
A+ | |
|
| |
Contenu sponsorisé
| Sujet: Re: DS | |
| |
|
| |
| DS | |
|