Salut!
(1-x)²fn(x)=(1-x)².sigma(1-->n) k.x^k
=(1-x).sigma(1-->n) k.(x^k-x^(k+1))
=(1-x)(x+x²+x^3+x^4+...+x^n -n.x^(n+1))
=(1-x)(1+x+x²+x^3+x^4+...+x^n)-(1-x)(1+n.x^(n+1))
=1-x^(n+1) -1-n.x^(n+1)+x+n.x^(n+2)
=x-(1+n-nx)x^(n+1)
donc fn(x)=[x-(1+n-nx).x^(n+1)]/(1-x)²
2.lim+00 fn(x)= lim+00 x[1-x^(n+1)+n(1-x).x^(n+1)]/(1-x)²
=x/(1-x)²
(sauf err )
puisque lim+00 n^(1/(n+1))=1 ==> lim+00 x.n^(1/(n+1))=x
==>lim+00 (x.n^(1/(n+1)))^(n+1)=lim+00 x^(n+1)=0