Forum des amateurs de maths
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.


Aide pour les futurs mathématiciens
 
AccueilAccueil  PortailPortail  RechercherRechercher  Dernières imagesDernières images  S'enregistrerS'enregistrer  Connexion  
Le Deal du moment :
SSD interne Crucial BX500 2,5″ SATA – 500 ...
Voir le deal
29.99 €

 

 Joli exo : suites =)

Aller en bas 
5 participants
AuteurMessage
rajaa16
Maître
rajaa16


Féminin Nombre de messages : 262
Age : 32
Date d'inscription : 27/03/2008

Joli exo : suites =) Empty
MessageSujet: Joli exo : suites =)   Joli exo : suites =) EmptyMar 30 Déc 2008, 12:12

Voici un exo très intéressant :

Soit (Un) une suite tel que : Uo+U1+U2.... +Un= 4n²-3n
Définir le terme général de (Un) .
Revenir en haut Aller en bas
memath
Expert sup
memath


Masculin Nombre de messages : 1645
Age : 32
Localisation : oujda
Date d'inscription : 17/02/2007

Joli exo : suites =) Empty
MessageSujet: Re: Joli exo : suites =)   Joli exo : suites =) EmptyMar 30 Déc 2008, 12:23

on a : Sn=4n²-3n=U1+U2+....+Un

donc Un=4n²-3n-S_{n-1}=4n²-3n-4(n-1)²+3(n-1)=8n-7 pour n>0

et U0=0
Revenir en haut Aller en bas
http://oujda-job.vu.ma
{}{}=l'infini
Expert sup
{}{}=l'infini


Masculin Nombre de messages : 1164
Age : 32
Date d'inscription : 25/09/2008

Joli exo : suites =) Empty
MessageSujet: Re: Joli exo : suites =)   Joli exo : suites =) EmptyMar 30 Déc 2008, 18:39

oui belle méthode laisse moi la reécrire

pout tout n £ IN*
on a : Uo+U1+U2.... +Un= 4n²-3n
donc : Uo+U1+U2.... +Un-1= 4(n-1)²-3(n-1)
Uo+U1+U2.... +Un-1= 4n² - 11n +7

n £ IN* :
Un = 4n²-3n - (4n² - 11n +7)
= 8n - 7
Un+1 - Un = 8
donc (Un)n£ IN* est une suite arithmètique de raison r=8 est et U0 = 0 et U1 = 1
Un = U1 + nr = 1+8n
conclusion :
pour n £ IN*
Un = 8n +1
et U0 =0

mais ce n'est pas logique si vous remplacez Un par U1 ou U2 ...

où est l'erreur


Dernière édition par {}{}=l'infini le Mar 30 Déc 2008, 22:05, édité 3 fois
Revenir en haut Aller en bas
miss-Design
Expert grade2
miss-Design


Féminin Nombre de messages : 337
Age : 32
Localisation : Agadir
Date d'inscription : 25/10/2008

Joli exo : suites =) Empty
MessageSujet: Re: Joli exo : suites =)   Joli exo : suites =) EmptyMar 30 Déc 2008, 19:18

{}{}=l'infini a écrit:
oui belle méthode laisse moi la reécrire

pout tout n £ IN*
on a : Uo+U1+U2.... +Un= 4n²-3n
donc : Uo+U1+U2.... +Un-1= 4(n-1)²-3(n-1)
Uo+U1+U2.... +Un-1= 4n² - 11n +7

n £ IN* :
Un = 4n²-3n - (4n² - 11n +7)
= 8n - 7
Un+1 - Un = 8
donc (Un)n£ IN* est une suite arithmètique de raison r=8 est et U0 = 0 et U1 = 1
Un = U1 + nr = 1+8n
conclusion :
pour n £ IN*
Un = 8n +1
et U0 =0

mais ce n'est pas logique si vous remplacez Un par U1 ou U2 ...

où est l'erreur

1rement ce n'est pas une suite arithmétique
2èmement : pour ce qui est en rouge c plutôt Un=U1+(n-1)r=8n-7
alors c n'est pas la peine que tu ajoutes ces dernières lignes
et dans la solution Un=8n-7 (pour n £ IN*) et U0=0
il n y a aucune erreur ni contradiction
Revenir en haut Aller en bas
Boomer
Maître
Boomer


Masculin Nombre de messages : 140
Age : 32
Localisation : lC
Date d'inscription : 18/07/2008

Joli exo : suites =) Empty
MessageSujet: Re: Joli exo : suites =)   Joli exo : suites =) EmptyMar 30 Déc 2008, 20:59

d'une autre methode
U_n+1=4n²+5n+1-(U_0+U_1+...+U_n)
U_n=4n²-3n-(U_0+U_1+...+U_n-1)

donc U_n+1-U_n=8n+1-U_n
U_n+1=8n+1

donc U_n=8(n-1)+1
=8n-7
Revenir en haut Aller en bas
http://nouvelordremondial.over-blog.org/categorie-724333.html
{}{}=l'infini
Expert sup
{}{}=l'infini


Masculin Nombre de messages : 1164
Age : 32
Date d'inscription : 25/09/2008

Joli exo : suites =) Empty
MessageSujet: Re: Joli exo : suites =)   Joli exo : suites =) EmptyMar 30 Déc 2008, 22:07

oui j'ai été pigé j'ai cru que Un commence par U0
Revenir en haut Aller en bas
Contenu sponsorisé





Joli exo : suites =) Empty
MessageSujet: Re: Joli exo : suites =)   Joli exo : suites =) Empty

Revenir en haut Aller en bas
 
Joli exo : suites =)
Revenir en haut 
Page 1 sur 1

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum des amateurs de maths :: Lycée :: Première-
Sauter vers: