| un peut d'aide en N complex...!!!! | |
|
|
Auteur | Message |
---|
mounia* Expert grade2
Nombre de messages : 320 Age : 33 Localisation : temara Date d'inscription : 24/09/2007
| Sujet: un peut d'aide en N complex...!!!! Sam 03 Jan 2009, 13:45 | |
| | |
|
| |
L Expert sup
Nombre de messages : 1558 Age : 33 Date d'inscription : 03/09/2007
| Sujet: Re: un peut d'aide en N complex...!!!! Sam 03 Jan 2009, 15:34 | |
| ah c'est meiux maintenant avec z^4 ^^^! z=0 n'est pas une solution on divise par z² on obtient z²+2z-1+2/z+1/z²=0 <=>z²+1/z² +2(z+1/z) -1=0 <=>U²-2+2U-1=0 delta=16 donc U=-2+4/2 ou -2-4/2 U=1 ou U=-3/2 et comme U=z²+1/z on doi resoudre dexu autres equations comme ca on en trouve 4 a la fin sauf erreur | |
|
| |
bolt=1/2 .c.u² Féru
Nombre de messages : 51 Age : 37 Date d'inscription : 03/01/2009
| Sujet: Re: un peut d'aide en N complex...!!!! Sam 03 Jan 2009, 15:49 | |
| petite erreur de frappe a la ligne 11 ( avant derniere) je crois que c U=z+1/z | |
|
| |
L Expert sup
Nombre de messages : 1558 Age : 33 Date d'inscription : 03/09/2007
| Sujet: Re: un peut d'aide en N complex...!!!! Sam 03 Jan 2009, 15:54 | |
| on peut aussi le lire (z²+1)/z ^^ c'est pas grave je m'excuse alors | |
|
| |
mounia* Expert grade2
Nombre de messages : 320 Age : 33 Localisation : temara Date d'inscription : 24/09/2007
| Sujet: Re: un peut d'aide en N complex...!!!! Sam 03 Jan 2009, 15:56 | |
| - L a écrit:
- ah c'est meiux maintenant avec z^4 ^^^!
z=0 n'est pas une solution on divise par z² on obtient z²+2z-1+2/z+1/z²=0 <=>z²+1/z² +2(z+1/z) -1=0 <=>U²-2+2U-1=0 delta=16 donc U=-2+4/2 ou -2-4/2 U=1 ou U=-3/2 et comme U=z²+1/z on doi resoudre dexu autres equations comme ca on en trouve 4 a la fin sauf erreur tu veut dire U=-3!! merci!! ps dsl au debut c'etait une fote avec^6!!!!! | |
|
| |
mounia* Expert grade2
Nombre de messages : 320 Age : 33 Localisation : temara Date d'inscription : 24/09/2007
| Sujet: Re: un peut d'aide en N complex...!!!! Sam 03 Jan 2009, 16:07 | |
| slt !!L!!bolt=1/2 .c.u²!!
tu veut dire le chifre 4 ou 4 solution moi j'ai trouvè 4 solution +/-(-3-V5)/2: et +/-V3i!! | |
|
| |
L Expert sup
Nombre de messages : 1558 Age : 33 Date d'inscription : 03/09/2007
| Sujet: Re: un peut d'aide en N complex...!!!! Sam 03 Jan 2009, 16:21 | |
| 4 solutions c'est un polynome de degre 4 | |
|
| |
mounia* Expert grade2
Nombre de messages : 320 Age : 33 Localisation : temara Date d'inscription : 24/09/2007
| Sujet: Re: un peut d'aide en N complex...!!!! Sam 03 Jan 2009, 16:27 | |
| ok!! merci infiniment bc bc L!! | |
|
| |
Oeil_de_Lynx Expert sup
Nombre de messages : 3113 Age : 76 Localisation : Date d'inscription : 13/08/2007
| Sujet: Re: un peut d'aide en N complex...!!!! Sam 03 Jan 2009, 20:33 | |
| BSR à Toutes et Tous !! BSR mounia* !!
Le polynôme P(Z)=Z^6+2Z^3-Z²+2Z+1 n’est pas symétrique car quand tu écris en liste les coefficients de ses monômes , celà te donne : 1 ,0 ,0,2,-1,2,1 . Les DEUX ZEROS correspondent à 0.Z^5+0.Z^4 qui sont absents dans P(Z) Pour que ta méthode puisse fonctionner , il aurait fallu prendre : P(Z)=Z^6+2.Z^5 - Z^4 + 2.Z^3 - Z²+2.Z+1 Ou bien P(Z)=Z^4 + 2.Z^3 - Z²+2.Z+1 De manière générale , le polynôme P(Z) supposé de degré PAIR n devrait satisfaire la condition P(Z)=Z^n.P(1/Z) et vérifier aussi P(0)<>0 et là tu pourras considérer le changement d’ indéterminée U=Z+{1/Z}
PS : C’était là la réponse que je voulais t’envoyer AVANT ta RECTIFICATION d’énoncé !!!!! | |
|
| |
mounia* Expert grade2
Nombre de messages : 320 Age : 33 Localisation : temara Date d'inscription : 24/09/2007
| Sujet: Re: un peut d'aide en N complex...!!!! Dim 04 Jan 2009, 19:35 | |
| - Oeil_de_Lynx a écrit:
- BSR à Toutes et Tous !!
BSR mounia* !!
Le polynôme P(Z)=Z^6+2Z^3-Z²+2Z+1 n’est pas symétrique car quand tu écris en liste les coefficients de ses monômes , celà te donne : 1 ,0 ,0,2,-1,2,1 . Les DEUX ZEROS correspondent à 0.Z^5+0.Z^4 qui sont absents dans P(Z) Pour que ta méthode puisse fonctionner , il aurait fallu prendre : P(Z)=Z^6+2.Z^5 - Z^4 + 2.Z^3 - Z²+2.Z+1 Ou bien P(Z)=Z^4 + 2.Z^3 - Z²+2.Z+1 De manière générale , le polynôme P(Z) supposé de degré PAIR n devrait satisfaire la condition P(Z)=Z^n.P(1/Z) et vérifier aussi P(0)<>0 et là tu pourras considérer le changement d’ indéterminée U=Z+{1/Z}
PS : C’était là la réponse que je voulais t’envoyer AVANT ta RECTIFICATION d’énoncé !!!!! bsr tous le monde !! bsr Ms ODL !! merci bc pour l'explication !!! commca je peurait meme me rassurè d'equations avant de commencè et j'aurais une idèè generale !!! merci encore !! et je suis vrement desolè a vous et a L egalement pour la fote que j'ai comit au debut !!!sorry....!! | |
|
| |
Contenu sponsorisé
| Sujet: Re: un peut d'aide en N complex...!!!! | |
| |
|
| |
| un peut d'aide en N complex...!!!! | |
|