salut hamza
!!!
ben Mon but c'est pas de resoudre l'exo car la reponse est tres simple mais de donner une generalité:
soient f et g deux fonctions de classe C^n c'est a dire n fois derivables et les derivées nieme sont continues ; montrer par reccurence que:
(fg)^(n) = som(k=0-->n){C(k;n)f^(k)g^(n-k)}
en Latex:
- Code:
-
$(fg)^{(n)}=\sum_{k}^{n} C_{n}^{k} f^{(k)}g^{(n-k)}$
et merci
PS: juste une remarque:
Perelman a écrit: - Citation :
- f^(2009)(x)==>c'est la dérivée de classe 2009
c'est pas classe mais
ordre _________________________________________________________________
lahoucine