retour
cas particulier:
a=b# 0
y' = a(1+y²)===> y'/(1+y²) = a ====> Arctan y = ax+c
====> y = tan(ax+c)
cas général :
y' = b(1+ a/b.y²)
si ab > 0 , on pose z = V(a/b).y
---------------------------------
===> z'=V(a/b).y' = V(a/b).b(1+z²)
===> z'/(1+z²) = b.V(a/b) ======> z = tan[ b/V(a/b).x + c]
si ab < 0 on pose z = V(-a/b).y =
-------------------------------------
====> z' = V(-a/b).y' =b.V(-a/b).(1-z²)
====> z'/(1-z²) = b.V(-a/b) ======>Arcth z = b.V(-a/b).x + c
====> z = th[ b.V(-a/b).x + c]
-------------------------------------------