Forum des amateurs de maths
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.


Aide pour les futurs mathématiciens
 
AccueilAccueil  PortailPortail  RechercherRechercher  Dernières imagesDernières images  S'enregistrerS'enregistrer  Connexion  
Le Deal du moment :
Code promo Nike : -25% dès 50€ ...
Voir le deal

 

 incertitude dans un exo de logique

Aller en bas 
3 participants
AuteurMessage
reda-t
Maître



Masculin Nombre de messages : 127
Age : 31
Localisation : latitude: 34°01'31'' nord
Date d'inscription : 19/08/2009

incertitude dans un exo de logique Empty
MessageSujet: incertitude dans un exo de logique   incertitude dans un exo de logique EmptyDim 27 Sep 2009, 21:30

salam,
voici l'exo:
demontrer que (A n £ N) n>=2 ===> [(n²+1)/(n^3-n)] n'appartient pas à N

voici la solution que je propose:
on a n^3-n=(n-1)n(n+1)
ce qui veut dire que 3/(n^3-n)
donc pour que [(n²+1)/(n^3-n)] appartienne à N il faut que 3/(n²+1)
et puisque cela est faut pour (quelque soit n>=2)
et puis conclure

alors qu'est ce que vous en pensez Question

merci d'avance Very Happy
Revenir en haut Aller en bas
{}{}=l'infini
Expert sup
{}{}=l'infini


Masculin Nombre de messages : 1164
Age : 32
Date d'inscription : 25/09/2008

incertitude dans un exo de logique Empty
MessageSujet: Re: incertitude dans un exo de logique   incertitude dans un exo de logique EmptyDim 27 Sep 2009, 21:36

oui , t'as raison

mais tu dois démontrer que 3 ne divise pas (n^2 + 1)

il te suffit une simple disjonction des cas

n= 3k
n= 3k+1
n=3k+2.
Revenir en haut Aller en bas
reda-t
Maître



Masculin Nombre de messages : 127
Age : 31
Localisation : latitude: 34°01'31'' nord
Date d'inscription : 19/08/2009

incertitude dans un exo de logique Empty
MessageSujet: Re: incertitude dans un exo de logique   incertitude dans un exo de logique EmptyDim 27 Sep 2009, 21:46

merci, je suis rassuré Razz

PS:j'ai fait la disjonction des cas mais je ne l'ai pas mentionné parce que ça prenait du temps;

merci encore Very Happy Smile
Revenir en haut Aller en bas
samix
Expert grade2
samix


Masculin Nombre de messages : 322
Age : 30
Localisation : Oujda
Date d'inscription : 02/12/2008

incertitude dans un exo de logique Empty
MessageSujet: Re: incertitude dans un exo de logique   incertitude dans un exo de logique EmptyDim 27 Sep 2009, 22:39

Salut ,

tu dois montrer que An £ N [(n²+1)/(n^3-n)] £ IN ===> n inférieure a 2

et remarque que si (n²+1)/(n^3-n) £ IN alors n²+1 >n^3-n
et tu continue ...
Revenir en haut Aller en bas
{}{}=l'infini
Expert sup
{}{}=l'infini


Masculin Nombre de messages : 1164
Age : 32
Date d'inscription : 25/09/2008

incertitude dans un exo de logique Empty
MessageSujet: Re: incertitude dans un exo de logique   incertitude dans un exo de logique EmptyDim 27 Sep 2009, 23:15

reda-t a écrit:
merci, je suis rassuré Razz

PS:j'ai fait la disjonction des cas mais je ne l'ai pas mentionné parce que ça prenait du temps;

merci encore Very Happy Smile

pour la disjonction :

pour n=3k : (n^2+1) = 3(3k^2) + 1 ne peut pas ^tre divisé par 3.
pour n=3k+1 : (n^2+1) = 3(3k^2+2k) +2 m^me chose.
pour n=3k+2 : (n^2+1) = 3(3k^2+4k+1)+2 m^me chose..

oui, il prend un peu du temps ,
mais je te l'indiquée car c'était ton chemin et ta méthode serait incomplète sans démontrer que 3 ne divise n^2 + 1 quelque soit n .
Bonne chance à tous !
Revenir en haut Aller en bas
{}{}=l'infini
Expert sup
{}{}=l'infini


Masculin Nombre de messages : 1164
Age : 32
Date d'inscription : 25/09/2008

incertitude dans un exo de logique Empty
MessageSujet: Re: incertitude dans un exo de logique   incertitude dans un exo de logique EmptyDim 27 Sep 2009, 23:21

pour ma méthode
je suppose que n >= 2.

(n^2 + 1) /n(n^2-1) £ IN ==> n/ n^2 + 1 ==> n / 1 =>n=1.

contradiction avec n >= 2 .

conclusion :

n>=2 ===> (n²+1)/(n^3-n) n'appartient pas IN.
Revenir en haut Aller en bas
Contenu sponsorisé





incertitude dans un exo de logique Empty
MessageSujet: Re: incertitude dans un exo de logique   incertitude dans un exo de logique Empty

Revenir en haut Aller en bas
 
incertitude dans un exo de logique
Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» petite equatin dans la logique
» entrer dans le coeur de la logique ...
» exo logique
» LOGIQUE.....
» logique logique

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum des amateurs de maths :: Lycée :: Première-
Sauter vers: