f(x) = x.Arctan([1 + √(1+x²)]/x)
==> f(x) = x.Arctan(x/[√(1+x²) - 1])
==> f(x) = x( pi/2 - Arctan([√(1+x²) - 1]/x) )
==> f(x) = pi/2.x - x.Arctan([√(1+x²) - 1]/x)
==> f(x) = pi/2.x - x.Arctan(x/[√(1+x²) + 1])
Pour aboutir à l'égalité voulue, il nous suffit donc de montrer que Arctan(x/[√(1+x²) + 1]) = 1/2.Arctan(x)
c.à.dire que tan(2Arctan(x/[√(1+x²) + 1])) = tan(Arctan(x))
c.à.dire que tan(2Arctan(x/[√(1+x²) + 1])) = x
Or, tan(2Arctan(x/[√(1+x²) + 1])) = tan(Arctan(x/[√(1+x²) + 1]) + Arctan(x/[√(1+x²) + 1]))
==> tan(2Arctan(x/[√(1+x²) + 1])) = 2 ( x/[√(1+x²) + 1] ) / ( 1 - x²/[√(1+x²) + 1]² )
==> tan(2Arctan(x/[√(1+x²) + 1])) = 2x[√(1+x²) + 1]/([√(1+x²) + 1]² - x²)
==> tan(2Arctan(x/[√(1+x²) + 1])) = 2x[√(1+x²) + 1]/2[√(1+x²) + 1])
==> tan(2Arctan(x/[√(1+x²) + 1])) = x
Et voilà.