Forum des amateurs de maths
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.


Aide pour les futurs mathématiciens
 
AccueilAccueil  PortailPortail  RechercherRechercher  Dernières imagesDernières images  S'enregistrerS'enregistrer  Connexion  
Le Deal du moment : -25%
-25% Samsung Odyssey G9 G95C – Ecran PC Gamer ...
Voir le deal
599 €

 

 L'énigme de Polytechnique:

Aller en bas 
3 participants
AuteurMessage
selfrespect
Expert sup
selfrespect


Masculin Nombre de messages : 2514
Localisation : trou noir
Date d'inscription : 14/05/2006

polytechnique - L'énigme de Polytechnique: Empty
MessageSujet: L'énigme de Polytechnique:   polytechnique - L'énigme de Polytechnique: EmptyMar 24 Oct 2006, 22:39

salut farao
L'énigme se passe dans un monastère très strict ou vivent 40 moines. Ces moines ont pour seule vocation la prière et il ne doivent absolument pas communiquer entre eux, ni par geste, encore moins par la parole. Ils ne peuvent meme pas se regarder dans un miroir. Chaque jour, le père supérieur, qui est le seul à pouvoir parler, réunis les moines dans la salle de réunion pour les informer des nouvelles du jour.
Une maladie très dangereuse et peut etre contagieuse vient d'arriver chez les moines, elle se caractérise par la présence de petites plaques rouges sur le visage, bien visibles mais non douloureuses. Elle ne provoque pas d'autres symptomes au début. Chaque moine ne peut donc pas savoir s'il est malade.
Le père supérieur décide de prévenir les moines. Lors de la réunion quotidienne, ils les informe donc que cette maladie est dangereuse, et ils demande qu'à la fin de chaque réunion, quand il le demandera, tous ceux qui se savent malades préparent leur valises et partent du monastère.
A la fin de cette réunion, le père supérieur demande: "Que tous ceux qui se savent malades se lèvent et s'en aillent". Mais personne ne se lève.
Le lendemain, à la fin de la réunion, le père supérieur demande: "Que tous ceux qui se savent malades se lèvent et s'en aillent". Mais personne ne se lève.
Le surlendemain, à la fin de la réunion, le père supérieur demande: "Que tous ceux qui se savent malades se lèvent et s'en aillent". A ce moment là, tous les moines qui sont malades se lèvent et s'en vont. Combien sont ils?
allez les mathimaticiens lol! !!!!
Revenir en haut Aller en bas
FERMAT
Modérateur



Nombre de messages : 138
Date d'inscription : 23/12/2005

polytechnique - L'énigme de Polytechnique: Empty
MessageSujet: Re: L'énigme de Polytechnique:   polytechnique - L'énigme de Polytechnique: EmptyMer 25 Oct 2006, 23:04

waw
Revenir en haut Aller en bas
abdelbaki.attioui
Administrateur
abdelbaki.attioui


Masculin Nombre de messages : 2564
Localisation : maroc
Date d'inscription : 27/11/2005

polytechnique - L'énigme de Polytechnique: Empty
MessageSujet: Re: L'énigme de Polytechnique:   polytechnique - L'énigme de Polytechnique: EmptyJeu 26 Oct 2006, 10:30

Ils sont 3. C'est classique
Revenir en haut Aller en bas
https://mathsmaroc.jeun.fr/
selfrespect
Expert sup
selfrespect


Masculin Nombre de messages : 2514
Localisation : trou noir
Date d'inscription : 14/05/2006

polytechnique - L'énigme de Polytechnique: Empty
MessageSujet: Re: L'énigme de Polytechnique:   polytechnique - L'énigme de Polytechnique: EmptyVen 27 Oct 2006, 13:08

oui c est vrai et voici la preuve (qui n'est pas la mienne Laughing )
Supposons qu'un seul moine soit malade. Lors de l'annonce du père supérieur, celui-ci constate forcément qu'aucun autre moine n'est malade, mais comme la maladie frappe bel et bien le monastère, c'est que lui même est malade est c'est le seul. Il devrait donc partir après la première annonce du père supérieur.
S'il y a 2 moines malades, chacun des deux moines malades voit qu'un autre est malade. Mais ils ne savent pas si eux mêmes sont malades. Ils attendent donc la fin de la première annonce. Aucun d'eux ne se leve car il ne savent pas s'ils sont malades. Mais à la fin de la réunion, comme aucun d'eux ne s'est levé, ils savent qu'il y a plus qu'un seul malade, car sinon on serait dans le cas précédent et l'unique malade serait parti à la fin de la première réunion. Ils sont donc bien tous les deux malades et, le lendemain, dès l'annonce du père supérieur ils peuvent se lever et partir car ils savent maintenant qu'ils sont les 2 seuls malades.
Faisons l'hypothèse que s'il y avait N malades, il pourraient partir juste après la Nième annonce du père supérieur car ils sauraient tous qu'ils sont malades.
Supposons qu'il y ai N+1 malades, chacun d'eux en voit N autres, mais ne savent pas s'il y a N malades ou bien N+1 car ils ne savent rien en ce qui les concerne eux-même. Ceux-ci doivent donc attendre la fin de la réunion du Nième jour pour savoir s'il sont malades. S'ils étaient N, ils seraient partis à la fin du Nième jour d'après l'hypothèse. S'ils ne sont pas partis le Nième jour, c'est donc qu'ils sont N+1, et ils peuvent donc partir juste après la (N+1)ième annonce. Comme l'hypothèse est vrai pour N=1, et que nous venons de vérifier la récurrence, l'hypothèse est donc toujours vraie.
En conclusion, telle qu'est posé l'énoncé, les moines malades sont donc 3. Et le fait qu'ils soient 40 au départ n'est la que pour embrouiller les esprits ... ;-)
source : EP lol!
Revenir en haut Aller en bas
Contenu sponsorisé





polytechnique - L'énigme de Polytechnique: Empty
MessageSujet: Re: L'énigme de Polytechnique:   polytechnique - L'énigme de Polytechnique: Empty

Revenir en haut Aller en bas
 
L'énigme de Polytechnique:
Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» Polytechnique
» polytechnique
» Oral polytechnique
» magnifique polytechnique
» Ecole polytechnique

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum des amateurs de maths :: Lycée :: Terminale-
Sauter vers: