Forum des amateurs de maths
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.


Aide pour les futurs mathématiciens
 
AccueilAccueil  PortailPortail  RechercherRechercher  Dernières imagesDernières images  S'enregistrerS'enregistrer  Connexion  
Le Deal du moment : -35%
-35% sur la machine à café Expresso ...
Voir le deal
359.99 €

 

 geometrie ...

Aller en bas 
3 participants
AuteurMessage
az360
Expert grade2
az360


Masculin Nombre de messages : 312
Age : 30
Localisation : agadir
Date d'inscription : 28/11/2010

geometrie ... Empty
MessageSujet: geometrie ...   geometrie ... EmptyJeu 19 Avr 2012, 23:29

voila :
geometrie ... Exe1
1- montrer que : AE est le bisectrice de BAC .
2 - montrer que : I est le centre du cercle circinscrit de ABC .
Spoiler:
Revenir en haut Aller en bas
Siba
Maître
Siba


Masculin Nombre de messages : 143
Date d'inscription : 12/12/2011

geometrie ... Empty
MessageSujet: Re: geometrie ...   geometrie ... EmptySam 21 Avr 2012, 18:59

Salut,

1)
On remarque déja que: BE = EC implique que: (AE) est la médiatrice de [BC].
Du coup: AB = AC, et donc: ^ABC = ^ACB, alors: [AE) est bien le bisectrice de ^BAC.
(Car dans les 2 autres angles on a Pi/2)
2)
I est un point et (AE), donc IBC est un triangle isocèle.
Puis on a dans IAB et IAC: AB = AC , IA = IB et ^CAI=^BAI.
Donc: IAB et IAC sont identiques. De plus, IBC est aussi leur identique, car ^BIC = ^AIB = ^AIC et IA = IB = IC.
D'ou le résultat.


Dernière édition par Siba le Dim 22 Avr 2012, 00:10, édité 1 fois
Revenir en haut Aller en bas
az360
Expert grade2
az360


Masculin Nombre de messages : 312
Age : 30
Localisation : agadir
Date d'inscription : 28/11/2010

geometrie ... Empty
MessageSujet: Re: geometrie ...   geometrie ... EmptySam 21 Avr 2012, 23:45

[quote="Siba"]Salut,

1)
On remarque déja que: BE = EC implique que: (AE) est la médiatrice de [BC].
la faute est ici . on n'a pas AB = AC n'est ce pas !!
Revenir en haut Aller en bas
Siba
Maître
Siba


Masculin Nombre de messages : 143
Date d'inscription : 12/12/2011

geometrie ... Empty
MessageSujet: Re: geometrie ...   geometrie ... EmptyDim 22 Avr 2012, 00:31

Heu, si je crois hhh, vu que le point A appartient à (AE)... qui est la médiatrive de [BC]...
Revenir en haut Aller en bas
az360
Expert grade2
az360


Masculin Nombre de messages : 312
Age : 30
Localisation : agadir
Date d'inscription : 28/11/2010

geometrie ... Empty
MessageSujet: Re: geometrie ...   geometrie ... EmptyDim 22 Avr 2012, 00:38

Siba a écrit:
Heu, si je crois hhh, vu que le point A appartient à (AE)... qui est la médiatrive de [BC]...
non asahbii parce que rien ne dit que AE et médiatrice de [BC] on a juste E tantami ila la mediatrice safiii .
Revenir en haut Aller en bas
Siba
Maître
Siba


Masculin Nombre de messages : 143
Date d'inscription : 12/12/2011

geometrie ... Empty
MessageSujet: Re: geometrie ...   geometrie ... EmptyDim 22 Avr 2012, 00:39

Ah oui, au pire on remarque que le triangle IBC est isocèle, donc I appartient à la médiatrice aussi.. par eventualité A aussi vu que A et I et C sont colinéaires hhh
Revenir en haut Aller en bas
az360
Expert grade2
az360


Masculin Nombre de messages : 312
Age : 30
Localisation : agadir
Date d'inscription : 28/11/2010

geometrie ... Empty
MessageSujet: Re: geometrie ...   geometrie ... EmptyDim 22 Avr 2012, 00:47

IBC n'est pas isocéle !!
Revenir en haut Aller en bas
Siba
Maître
Siba


Masculin Nombre de messages : 143
Date d'inscription : 12/12/2011

geometrie ... Empty
MessageSujet: Re: geometrie ...   geometrie ... EmptyDim 22 Avr 2012, 01:14

ah oui pardon, j'avais mal compris l'enoncé, il fallait pas dessiner la figure pour nous laisser faire hhh, sinon voici ma solution finale:
On travaille avec les angles ^BAE=a , ^CAE=b , ^ABC=c , ^ACB=d.
AE/sin(d+x) = CE/sin(b) *(1)
AE/sin(c+x) = BE/sin(a) *(2)
De 1 et 2, on obtient:
sin(a) . sin(b+x) = sin(c+x) . sin(b)
Vu que: c+d+2x = Pi, alors, on obtient:
sin(a)/sin(c+x) = sin(b)/sin(c+x)
D'ou: sin(a) = sin(b)
Donc a = b (les angles étant inferieur à 90).
D'ou le résultat Wink


Dernière édition par Siba le Dim 22 Avr 2012, 01:23, édité 1 fois
Revenir en haut Aller en bas
az360
Expert grade2
az360


Masculin Nombre de messages : 312
Age : 30
Localisation : agadir
Date d'inscription : 28/11/2010

geometrie ... Empty
MessageSujet: Re: geometrie ...   geometrie ... EmptyDim 22 Avr 2012, 01:16

tu peut le faire sans ("sin") juste avec la géométrie euclidienne . mais en tout cas je croix que votre solution est juste !!
Revenir en haut Aller en bas
Siba
Maître
Siba


Masculin Nombre de messages : 143
Date d'inscription : 12/12/2011

geometrie ... Empty
MessageSujet: Re: geometrie ...   geometrie ... EmptyDim 22 Avr 2012, 01:17

ah enfin Razz sinon propose ta solution Wink
Revenir en haut Aller en bas
az360
Expert grade2
az360


Masculin Nombre de messages : 312
Age : 30
Localisation : agadir
Date d'inscription : 28/11/2010

geometrie ... Empty
MessageSujet: Re: geometrie ...   geometrie ... EmptyDim 22 Avr 2012, 01:33

1 - il suffit de montrer que : ABEC is cyclique (parce que on a : BEC = pi - 2x = pi - BAC)
d'ou le resultat !!
et 2 tu peut le montrer ??
Revenir en haut Aller en bas
Nas8
Féru



Masculin Nombre de messages : 55
Age : 28
Date d'inscription : 26/11/2011

geometrie ... Empty
MessageSujet: Re: geometrie ...   geometrie ... EmptyMar 24 Avr 2012, 17:39

Est-ce que A et I et E ne sont pas colinéaires ??
Revenir en haut Aller en bas
az360
Expert grade2
az360


Masculin Nombre de messages : 312
Age : 30
Localisation : agadir
Date d'inscription : 28/11/2010

geometrie ... Empty
MessageSujet: Re: geometrie ...   geometrie ... EmptyMar 24 Avr 2012, 20:16

yeees
Revenir en haut Aller en bas
Nas8
Féru



Masculin Nombre de messages : 55
Age : 28
Date d'inscription : 26/11/2011

geometrie ... Empty
MessageSujet: Re: geometrie ...   geometrie ... EmptyMar 24 Avr 2012, 21:08

I apartient au bisectrice de ^BEC ?
Revenir en haut Aller en bas
az360
Expert grade2
az360


Masculin Nombre de messages : 312
Age : 30
Localisation : agadir
Date d'inscription : 28/11/2010

geometrie ... Empty
MessageSujet: Re: geometrie ...   geometrie ... EmptyMer 25 Avr 2012, 12:25

nOoon
Revenir en haut Aller en bas
Contenu sponsorisé





geometrie ... Empty
MessageSujet: Re: geometrie ...   geometrie ... Empty

Revenir en haut Aller en bas
 
geometrie ...
Revenir en haut 
Page 1 sur 1

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum des amateurs de maths :: Lycée :: Seconde - Tronc commun-
Sauter vers: