ah ^^
On pose: n²/3=p+r (1)
(E)<==>p+[(2(n+1))/3]=[p+r+(2n+1)/3]
(E)<==>p+[(2(n+1))/3]=p+[r+(2n+1)/3]
(E)<==>[(2n+2))/3]=[r-1/3+(2n+2)/3]
On pose: (2n+2))/3=p'+r' (2)
(E)<==>p'=[r-1/3+p'+r']
(E)<==>p'=p'+[r+r'-1/3]
(E)<==>[r+r'-1/3]=0
On peut démontrer facilement que: 0<r+r'-1/3<1 en utilisant les relations (1) et (2).
D'ou le résultat.