x=0 ==> f(0)=f(yf(0)) qqs y ==> f(0)=0 car f non constante
y=0 et f(x)=0 ==> f(xf(x))=x²=0 ===> x=0. Donc f(x)=0 <==> x=0
y=0 ==> f(xf(x))=x² qqs x
f(x)=f(y)==> f(xf(x))=f(xf(y))= f((y-x)f(x))+x²=x²==> f((y-x)f(x))=0 ==>(y-x)f(x)=0==>x=y
==> f est injectif
f(xf(x))=x²=f(-xf(-x)) ==> xf(x)=-xf(-x) ==> f impair
f(f(1))=1 ==> f(f(1)f(f(1))=f(1)²=1
on pose a=f(1) ==> a²=1
f(xa)=f(xf(1))=f((1-x)f(x))+x²=-f((x-1)f(x))+x²=-f(f(x-1))-(x-1)²+x²=-f(xa)+2x
===> f(ax)=x ===> f(x)=ax