a entier >1 sinon la somme est vide
H(n)=1/1+1/2+...+1/n=ln(n)+µ+1/2n+o(1/n) (µ est la constante d' Euler)
1/(n+1)+...+1/na
= H(na)-H(n)
=ln(a)+(1/a-1)/2n+o(1/n)
==>
exp(1/(n+1)+...+1/na))
= a exp( (1/a-1)/2n+o(1/n))
= a( 1+ (1/a-1)/2n+o(1/n)) car exp(t)=1+t+o(t) en 0
=a+ (1-a)/2n+o(1/n)
==>
n(a-exp(1/(n+1)+...+1/na))=(a-1)/2+o(1) --> (a-1)/2