Forum des amateurs de maths
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.


Aide pour les futurs mathématiciens
 
AccueilAccueil  PortailPortail  RechercherRechercher  Dernières imagesDernières images  S'enregistrerS'enregistrer  Connexion  
Le Deal du moment : -25%
-25% Samsung Odyssey G9 G95C – Ecran PC Gamer ...
Voir le deal
599 €

 

 belle équation trigo

Aller en bas 
4 participants
AuteurMessage
belgacem
Maître



Masculin Nombre de messages : 112
Age : 61
Date d'inscription : 18/06/2012

belle équation trigo Empty
MessageSujet: belle équation trigo   belle équation trigo EmptyVen 16 Jan 2015, 19:48

Résoudre dans R l'équation suivante :

belle équation trigo Gif
Revenir en haut Aller en bas
Oeil_de_Lynx
Expert sup
Oeil_de_Lynx


Masculin Nombre de messages : 3113
Age : 76
Localisation :
Date d'inscription : 13/08/2007

belle équation trigo Empty
MessageSujet: Re: belle équation trigo   belle équation trigo EmptyLun 19 Jan 2015, 13:16

belgacem a écrit:
Résoudre dans R l'équation suivante :

belle équation trigo Gif

BJR belgacem

En effet , c'est Une Belle Equation Trigo !!
Mais la Poser ne Signifie pas que l' on sache la résoudre à la Main aussi facilement que Cela !!!!
Maple ou Mathématica Sauront le faire en un Clin d' Oeil .

LHASSANE

PS1 : Pour des Lycéens , ce n'est pas Intéressant du tout ....
PS2 : Pour les Etudiants en Fac et les Préparationnaires , c'est un excellent T.P à faire sur Maple ou tout autre Logiciel de Calcul Formel !!!
PS3 : Pour Toi belgacem , Tu pourras essayer celle-ci un peu moins dure

Résoudre dans R l'équation suivante :
belle équation trigo Gif


Dernière édition par Oeil_de_Lynx le Sam 07 Fév 2015, 13:10, édité 1 fois
Revenir en haut Aller en bas
aymanemaysae
Expert grade1



Masculin Nombre de messages : 428
Age : 28
Date d'inscription : 22/01/2014

belle équation trigo Empty
MessageSujet: Re: belle équation trigo   belle équation trigo EmptyMar 03 Fév 2015, 19:59

On a Sin(5x) est une fonction impaire et 2 Sin(3x) Sin(4x) est une fonction paire: l'égalité n'a lieu que
pour (Sin(5x)=0 et Sin(3x) Sin(4x)=0) <--> (Sin(5x)=0 et Sin(3x)=0) ou (Sin(5x)=0 et Sin(4x)=0)
<--> (5x=k pi : k entier relatif et 3x=h pi : h entier relatif)
   ou (5x=m pi : m entier relatif et 4x=n pi : n entier relatif)
<--> (x=k pi/5 : k entier relatif et x=h pi/3 : h entier relatif) : k=3K et h=5H avec K et H des entiers relatifs
   ou (x=m pi/5 : m entier relatif et x=n pi/4 : n entier relatif) : m=4M et n=5N avec M et N des entiers relatifs
<--> (x=K pi : K entier relatif et x=H pi : H entier relatif)
   ou (x=M pi : M entier relatif et x=N pi : N entier relatif)
<--> x= t pi : t entier relatif.

J'espère que ce n'est pas faux.

Cordialement, AymaneMaysae.
Revenir en haut Aller en bas
Oeil_de_Lynx
Expert sup
Oeil_de_Lynx


Masculin Nombre de messages : 3113
Age : 76
Localisation :
Date d'inscription : 13/08/2007

belle équation trigo Empty
MessageSujet: Re: belle équation trigo   belle équation trigo EmptyMar 03 Fév 2015, 20:22

aymanemaysae a écrit:
On a Sin(5x) est une fonction impaire et 2 Sin(3x) Sin(4x) est une fonction paire: l'égalité n'a lieu que
pour (Sin(5x)=0 et Sin(3x) Sin(4x)=0) <--> (Sin(5x)=0 et Sin(3x)=0) ou (Sin(5x)=0 et Sin(4x)=0)
.........................................................................
J'espère que ce n'est pas faux.

Cordialement, AymaneMaysae.

BSR au Forum .
BSR aymaneMaysae .

C'est Très Séduisant à Première Vue ...
Mais Vous Faites Une Erreur .

Considérons les deux applications suivantes :

f : x ---------> f(x)=x^2 de IR dans IR et
g : x ---------> g(x)=x.Abs(x) de IR dans IR aussi

f est PAIRE , g est IMPAIRE Mais on a l' égalité
f(x)=g(x) lorsque x est dans IR+

Et non pas seulement en x=0 .
Voilà votre erreur .
Autrement , c'est très charmant .

Amicalement . LHASSANE

Revenir en haut Aller en bas
aymanemaysae
Expert grade1



Masculin Nombre de messages : 428
Age : 28
Date d'inscription : 22/01/2014

belle équation trigo Empty
MessageSujet: Re: belle équation trigo   belle équation trigo EmptyMar 03 Fév 2015, 23:37

Merci, pour la remarque.
Je me rends compte que ce n'est pas si simple que çà !
Revenir en haut Aller en bas
aymanemaysae
Expert grade1



Masculin Nombre de messages : 428
Age : 28
Date d'inscription : 22/01/2014

belle équation trigo Empty
MessageSujet: Re: belle équation trigo   belle équation trigo EmptyMer 04 Fév 2015, 20:35

belle équation trigo Oeil10
Revenir en haut Aller en bas
Oeil_de_Lynx
Expert sup
Oeil_de_Lynx


Masculin Nombre de messages : 3113
Age : 76
Localisation :
Date d'inscription : 13/08/2007

belle équation trigo Empty
MessageSujet: Re: belle équation trigo   belle équation trigo EmptyMer 04 Fév 2015, 21:37

Résoudre dans R l'équation suivante :

belle équation trigo Gif

BSR au Forum .
BSR aymanemaysae .

Mon idée était de transformer tout le problème en une recherche de racines d' un polynôme
P(SIN(x)) . Or si SIN(5.x) et SIN(3.x) peuvent s'exprimer sous la forme Q(SIN(x))
ou Q[X] est un polynôme facile à déterminer ... Le Cas de SIN(4.x) pose problème
La Transformation de SIN(4x) fait apparaitre un facteur COS(x)  gênant .....

Il n' empêche que l' on peut continuer en Tournant la difficulté MAIS en compliquant les Calculs .
Il suffira de poser t=TAN(x/2)  et d' utiliser les Formules Classiques :
SIN(x) = 2.t/(1+t^2)  et  COS(x) = (1-t^2)/(1+t^2)

Pour ramener l' équation initiale à une autre de la forme :
Résoudre dans IR l' équation  R(t)=0
Avec R[X] polynôme  ( de degré assez élevé , je n' ai pas cherché ... )

Cela ne me parait pas évident à traiter .....

Amicalement . LHASSANE
Revenir en haut Aller en bas
aymanemaysae
Expert grade1



Masculin Nombre de messages : 428
Age : 28
Date d'inscription : 22/01/2014

belle équation trigo Empty
MessageSujet: Re: belle équation trigo   belle équation trigo EmptyJeu 05 Fév 2015, 16:15

belle équation trigo Oeil210
Revenir en haut Aller en bas
Oeil_de_Lynx
Expert sup
Oeil_de_Lynx


Masculin Nombre de messages : 3113
Age : 76
Localisation :
Date d'inscription : 13/08/2007

belle équation trigo Empty
MessageSujet: Re: belle équation trigo   belle équation trigo EmptySam 07 Fév 2015, 13:07

BJR au Forum.
BJR AymaneMaysae .

Je voulais te dire Trois choses :
1) Les expressions de SIN(5x) , SIN(3x) et SIN(4x) sont exactes ...
2) L'équation proposée admet les solutions x=0  Modulo (PI)
A Cause du Facteur SIN(x) que l' on retrouve ......
3) Lorsque SIN(x)<>0 on peut simplifier l' équation d' une part et d' autre par et on peut se permettre de faire le Changenent de variable t=TAN(x/2)
Note que Modulo PI , il n'est valable que si  -PI <x < PI .

Pour le reste , le polynôme en   t  obtenu est de Degré si élevé qu' Il faut laisser Maple ou Mathématica utiliser ses Routines Internes pour trouver les autres solutions Modulo PI .
Les Calculs à la Main s' avèrent extrêmement Fastidieux !!!!!

Amicalement . LHASSANE

Revenir en haut Aller en bas
abdelbaki.attioui
Administrateur
abdelbaki.attioui


Masculin Nombre de messages : 2564
Localisation : maroc
Date d'inscription : 27/11/2005

belle équation trigo Empty
MessageSujet: Re: belle équation trigo   belle équation trigo EmptyMer 24 Juin 2015, 19:26

Pour les CPGE et équivalent

Pour tout t réel , sin(t)=sum_{n=0}^{+oo} (-1)^n t^{2n+1}/(2n+1)!
sin(5x)=2sin(3x)sin(4x)
<==>
sum_{n=0}^{+oo} (-1)^n (5x)^{2n+1}/(2n+1)!
=2sum_{n=0}^{+oo} (-1)^n (3x)^{2n+1}/(2n+1)! sum_{n=0}^{+oo} (-1)^n (4x)^{2n+1}/(2n+1)!

produit de Cauchy .....
Revenir en haut Aller en bas
https://mathsmaroc.jeun.fr/
Contenu sponsorisé





belle équation trigo Empty
MessageSujet: Re: belle équation trigo   belle équation trigo Empty

Revenir en haut Aller en bas
 
belle équation trigo
Revenir en haut 
Page 1 sur 1

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum des amateurs de maths :: Lycée :: Première-
Sauter vers: