E={x>=0 | 6 +x^(1 /4) >= 7x^(1 /12)}.
If noted g = 6 +x^(1 /4) -7x^(1 /12); x>=0 : dg /dx = 1 /4 x^(-3 /4) -7 /12 x^(-11 /12)
Thus dg /dx > 0 <==> x^(11 /12 -3 /4) > 4 *7 /12
So whatever is x, 6 +x^(1 /4) -7x^(1 /12) >= g[(7 /3)^6]
Then for x >= 0 [x^(1 /4) +√(x /36)] -[7 /6 x^(1 /3)] >= qx^(1 /4) where q =1 -[-(7 /3)^(1.5) +7√(7 /3)] /6, with an equality at x =(7/3)^6. Nevertheless q=1-(7 /9)√(7 /3) and then it is negative.