pour n=1 c'est juste
on suppose que
x^(n+1)1/x^(n+1)=3(x^n+1/x^n)-(x^(n-1)+1/x^(n-1) donc
x^(n+1)1/x^(n+1)(x+1/x)=x^(n+2)+1/x^(n+2)+1/x^n+x^n=
3(x^n+1/x^n)(x+1/x)-(x^(n-1)+1/x^(n-1)(x+1/x)=
3(x^(n+1)+1/(x^(n+1))+3(x^(n-1)+1/x^(n-1))-3(x^(n-1+1/(x^(n-1)=3(x^(n+1)+1/x^(n+1))=>
x^(n+2)+1/x^(n+2)=3(x^(n+1)+1/x^(n+1))-x^n+1/x^n d'ou la resultat