soit eps>0 , il existe a>0 tq x>=a ==> 0=<f(x+1)-f(x)<eps
Soit x>a+1, et n=<x-a<n+1 ==> x-n>=a
0=<f(x)-f(x-1)<eps
0=<f(x-1)-f(x-2)<eps
...
0=<f(x-n+1)-f(x-n)<eps
------------------------------
0=<f(x)-f(x-n)<n.eps<(x-a)eps
==> f(a)=<f(x)=< f(a+1)+(x-a)eps
==> lim f(x)/x =0 qd x ---> +00