slt,
après developpement linégo <==> a²b²c²+2(a²b²+b²c²+c²a²)+4(a²+b²+c²)+8 >= 9(ab+bc+ca)
posons S ce qui est a gauche
S=(a²b²c²+2+a²+b²+c²)+3(a²+b²+c²)+2(a²b²+b²c²+c²a²+3)
donc S >= (2abc+1+a²+b²+c²) + 3(ab+bc+ca) + 4(ab+bc+ca)
or on sait que a²+b²+c²+2abc+1 >= 2(ab+bc+ca) [ je l'ai déjà démontré dans dans un autre topic ]
d'où le résultat !!