salut bon on va simplifier par "te7wilat le3tiadia"
donc cos^3(x)+sin^3(x) = 1 ==> cos²(x) . cosx + sin²(x).sinx = (cos2x+sin²x)cosx + [ (1- cos2x)/2 ] . sinx = (cos2x + (1-cos2x)/2 + ( 1- cos2x).sin(x)/2 ={ [cos2x+ (1- cos 2x )]cosx + ( 1- cos2x).sinx}/2 = {(1-sin²x).cosx + sin²x.sinx }/2 = {cosx-cosx.sin²x + sin²x.sinx}/2 = (sin²x/4sinx )-(sin²x.sin²x)/4sinx + sin²x.sinx/2 = [sin²x - (sin²x)² + 4(sin²x)² ]/4sinx = (sin²x- 3 (sin²x)²)/2sinx = (sinx - 3(sin²x)².sinx )/2 = sinx(1-3sin²x)/2=1
bon ghadi yeb9alik te2tir selon lmajal li katentami lih x .