la solution de hilbert_1988
on pose x_k = 2005 + k/n for k = 0, 1, ..., n. Then
|f(2006) – f(2005)|= |f(x_n) – f(x_0)|
= |(f(x_1) – f(x_0)) + (f(x_2) – f(x_1)) +... + (f(x_n) – f(x_n–1))|
≤ |(f(x_1) – f(x_0))| + |(f(x_2) – f(x_1))| +... + |(f(x_n) – f(x_n–1))|
≤ (x1– x0)2 + (x2– x1)2+... + (xn– xn–1)2
= n(1/n)2
= 1/n
d'où |f(2006) – f(2005)| ≤ 1/n ,d'où f(2009) – f(2010) = 0 en faisant tendre n à l'infinie.