Voici la réponse:
On a x²+y²=2.
Donc x²+y²+2xy=2+2xy.
Donc (x+y)²=2(1+xy).
Donc (x+y)²/2=(1+xy).
D'autre part, on a 1/(x+1)+1/(y+1)=((y+1)+(x+1))/(x+1)(y+1).
Donc 1/(x+1)+1/(y+1)=(y+1+x+1)/(xy+1+x+y).
Donc 1/(x+1)+1/(y+1)=(y+1+x+1)/(x+y+(x+y)²/2).
Donc 1/(x+1)+1/(y+1)=(y+x+2)/((x+y)(x+y+2)/2).
Donc 1/(x+1)+1/(y+1)=2(y+x+2)/(x+y)(x+y+2).
Finalement 1/(x+1)+1/(y+1)=2/(x+y).
Sauf erreur.