Bnj ..
1-
on pose : z = x+iy
3wedha flmodule ...
Ɩ x +i(y+1) Ɩ = Ɩ x +i(y-1) Ɩ
x^2+ (y+1)^2 = x^2+ (y-1)^2
simplifie...
y= 0 { s q f d } :d
2-
(z+i)^3 =-i (z-i)^3
dakhal lmodule ..
Ɩ (z+i)^3 Ɩ=Ɩ -i (z-i)^3 Ɩ
Ɩ (z+i)^3 Ɩ=Ɩ -i Ɩ Ɩ (z-i)^3 Ɩ
ma3a ( Ɩ -i Ɩ =1 )
toussbih : Ɩ (z+i)^3 Ɩ= Ɩ (z-i)^3 Ɩ
w toussbih : Ɩ (z+i)Ɩ= Ɩ (z-i) Ɩ
wa bitali houloulaha a3dade ha9i9ia wa dalika hassaba sou2al (1)
{ s q f d } :d