pour 1>x>0, sq(1+x)=1+x/2-x²/8+...
n>4
sq(n)+sq(n+1)+sq(n+2)
=sq(n)+sq(n)(1+1/n)+sq(n)(1+2/n)
=sq(n)( 1+(1+1/2n-1/8n²+...)+(1+1/n-1/2n²+...))
=3sq(n)( 1+1/2n-5/24n²+...)
sq(9n+8 )
=3sq(n)(1+8/9n)
=3sq(n)(1+4/9n- 8/81n²+...)
sq(n)+sq(n+1)+sq(n+2)-sq(9n+8 )
=3sq(n)((1/2n-5/24n²+...) -(4/9n- 8/81n²+...))
=3sq(n)(1/18n- ...)
=1/6sq(n)-...
<1
Autre méthode
on pose u_n=sq(n)+sq(n+1)+sq(n+2) et v_n=sq(9n+8 )
u_n-v_n
=sq(n)-sq(n+8/9)+sq(n+1)-sq(n+8/9)+sq(n+2)-sq(n+8/9)
=-8/9(sq(n)+sq(n+8/9))+1/9(sq(n+1)+sq(n+8/9))+10/9(sq(n+2)+sq(n+8/9))
mais 2sq(n)< sq(n)+sq(n+8/9)<2sq(n+8/9)
2sq(n+8/9)< sq(n+1)+sq(n+8/9)<2sq(n+2)
2sq(n+8/9)< sq(n+2)+sq(n+8/9)<2sq(n+2)
alors
u_n-v_n
<-4/9sq(n+8/9)+1/18sq(n+8/9)+5/9 sq(n+8/9)
= 1/6sq(n+8/9)=1/2v_n
u_n-v_n
>-4/9sq(n)+11/18sq(n+2)>0
v_n< u_n< v_n+1/2v_n
v_n²=<E(v_n)²=<E(u_n)²<E(v_n+1/2v_n)² )<(v_n+1/2v_n)²
=v_n²+1+1/4v_n²=<E(u_n)²+1+1/4v_n²
==> E(u_n)²=E(v_n)²==> E(u_n)=E(v_n)