- belgacem a écrit:
- sachant :
x+y+z = 6
x²+y²+z² = 8
x^3 +y^3 +z^3 = 5
calculez : x^4 +y^4 +z^4
On a (x^3+y^3+z^3)(x+y+z)=x^4+y^4+z^4+(xy+xz+yz)(x²+y²+z²)-xyz(x+y+z)
Et 2(xy+xz+yz)=(x+y+z)²-(x²+y²+z²)=36-8=28 donc xy+xz+yz=14
Et x^3+y^3+z^3-3xyz=(x+y+z)(x²+y²+z²-xy-xz-yz)=-36 alors xyz=41/3
D'où x^4+y^4+z^4=(x^3+y^3+z^3)(x+y+z)-(xy+xz+yz)(x²+y²+z²)+xyz(x+y+z)=30-112+82=0