1/on a 2rac(ab)>0 ↔ a +b+2rac(ab)>a+b
alors ↔ (rac(a) + rac(b))² > (rac(a+b))²
donc ↔ rac(a) + rac(b) >rac(a+b) ( rac(a) + rac(b) >0 et rac(a+b)>0)
2/on a rac(a) + rac(b) >rac(a+b)↔ ( rac(a) + rac(b))^4 >(rac(a+b))^4
↔( rac(a) + rac(b))^4 >(a+b)² (1)
et on a rac(ab)<2rac(ab)< a+b →rac(ab)< a+b→rac(ab)(a+b)< (a+b)² (2)
de (1) et (2) on deduit ke rac(ab)[a+b]<[rac(a)+rac(b)]^4