youness boye Maître
Nombre de messages : 181 Age : 34 Localisation : marrakech Date d'inscription : 17/11/2006
| Sujet: equation 2 Dim 15 Juil 2007, 11:31 | |
| resoudre dans R^2 l'equation suivante :
9y^2-(x+1)^2=32 | |
|
Bison_Fûté Expert sup
Nombre de messages : 1595 Age : 65 Date d'inscription : 11/02/2007
| Sujet: Re: equation 2 Dim 15 Juil 2007, 13:12 | |
| Dans IRxIR, ce problème ne présente AUCUN interet puisqu'à chaque x donné il y aura deux solutions en y !!!!! Cependant si on écrit la factorisation suivante : (3y-x-1).(3y+x+1)=32 et si on se propose de résoudre ce même problème dans INxIN alors là , il y aurait des choses interessantes à déduire en prenant les diviseurs 1,2,4,8,16 et 32 de 32 . A toi de poursuivre ..... A+ LHASSANE
Dernière édition par le Dim 15 Juil 2007, 17:16, édité 1 fois | |
|
Weierstrass Expert sup
Nombre de messages : 2079 Age : 35 Localisation : Maroc Date d'inscription : 03/02/2006
| Sujet: Re: equation 2 Dim 15 Juil 2007, 13:45 | |
| - BOURBAKI a écrit:
- Dans IRxIR, ce problème ne présente AUCUN interet puisqu'à chaque x donné il y aura deux solutions en y !!!!!
Cependant si on écrit la factirisation suivante : (3y-x-1).(3y+x+1)=32 et si on se propose de résoudre ce même problème dans INxIN alors là , il y aurait des choses interessantes à déduire en prenant les diviseurs 1,2,4,8,16,et32 de 32 . A toi de poursuivre ..... A+ LHASSANE tout a fait d'accord | |
|
badre Débutant
Nombre de messages : 3 Date d'inscription : 25/07/2007
| Sujet: Re: equation 2 Mer 25 Juil 2007, 17:13 | |
| - BOURBAKI a écrit:
- Dans IRxIR, ce problème ne présente AUCUN interet puisqu'à chaque x donné il y aura deux solutions en y !!!!!
Cependant si on écrit la factorisation suivante : (3y-x-1).(3y+x+1)=32 et si on se propose de résoudre ce même problème dans INxIN alors là , il y aurait des choses interessantes à déduire en prenant les diviseurs 1,2,4,8,16 et 32 de 32 . A toi de poursuivre ..... A+ LHASSANE oui lhassan j'ai remarqué exactement la meme chose ! | |
|