Forum des amateurs de maths
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.


Aide pour les futurs mathématiciens
 
AccueilAccueil  PortailPortail  RechercherRechercher  Dernières imagesDernières images  S'enregistrerS'enregistrer  Connexion  
-38%
Le deal à ne pas rater :
Ecran PC gaming 23,8″ – ACER KG241Y P3bip à 99,99€
99.99 € 159.99 €
Voir le deal

 

 un peu de trigonomitrie

Aller en bas 
2 participants
AuteurMessage
o0aminbe0o
Expert sup



Masculin Nombre de messages : 963
Age : 34
Date d'inscription : 20/05/2007

un peu de trigonomitrie Empty
MessageSujet: un peu de trigonomitrie   un peu de trigonomitrie EmptyMar 31 Juil 2007, 17:20

soit (x ,y ,z)£IR^3/ tan(x)tan(y)tan(z)=1

trouver sup(sin(x)sin(y)sin(z))
bonne chance! Wink
Revenir en haut Aller en bas
o0aminbe0o
Expert sup



Masculin Nombre de messages : 963
Age : 34
Date d'inscription : 20/05/2007

un peu de trigonomitrie Empty
MessageSujet: Re: un peu de trigonomitrie   un peu de trigonomitrie EmptyMar 31 Juil 2007, 21:33

allez les gars , vous n 'étes pas motivé?!
Revenir en haut Aller en bas
selfrespect
Expert sup
selfrespect


Masculin Nombre de messages : 2514
Localisation : trou noir
Date d'inscription : 14/05/2006

un peu de trigonomitrie Empty
MessageSujet: Re: un peu de trigonomitrie   un peu de trigonomitrie EmptyMar 31 Juil 2007, 21:48

o0aminbe0o a écrit:
soit (x ,y ,z)£IR^3/ tan(x)tan(y)tan(z)=1 *

trouver sup(p=sin(x)sin(y)sin(z))
bonne chance!
posons a=sin(x) et b=sin(y) et c=sin(z) on a bien a,b,c dans [-1,1]
E={abc/(a,b,c))in [-1,1]}
on a de * a²b²c²=(1-a²)(1-b²)(1-c²)
d'autre part (1-a²)(1-b²)(1-c²)=<{1-([3]sqrt(a²b²c²))}^3
(considerer x-->ln(1-e^x) concave ..))
==>[3]sqrt{a²b²c²}=<1-[3]sqrt(a²b²c²)
==> [3]sqrt(a²b²c²)=<1/2
==>abc=alors Sup E=rac(2)/4 atteint pour lal=lbl=lcl=rac(2)/2
generalisation:
*\prod_{i=1^n}tg(x_i)=1
Sup {\prod_{i=1^n}sin(x_i)}=2^{-n/2}
on utiluse
\prod_{i=1^n} (1-(x_i)^2)=<(1-[n]sqrt[prod{x_i}²])^n


Dernière édition par le Mar 31 Juil 2007, 22:25, édité 2 fois
Revenir en haut Aller en bas
o0aminbe0o
Expert sup



Masculin Nombre de messages : 963
Age : 34
Date d'inscription : 20/05/2007

un peu de trigonomitrie Empty
MessageSujet: Re: un peu de trigonomitrie   un peu de trigonomitrie EmptyMar 31 Juil 2007, 22:12

belle démo ,mais jai une méthode plus facile pour tout le monde donc plus accessible :
sin(2x)sin(2y)sin(2z)=<1 <=> 8(sin(x)cos(x)sin(y)cos(y)sin(z)cos(z))=<1
<=>sin(x)sin(y)sin(z)=<1/(8cos(x)cos(y)cos(z))
<=>sin²(x)sin²(y)sin²(z)=<tan(x)tan(y)tan(z)/8
<=>sin²(x)sin²(y)sin²(z)=<1/8


=====> sup(sin(x)sin(y)sin(z))=rac(2)/4



mais tous les chemins menent à rome , ce qui est génial!
Revenir en haut Aller en bas
selfrespect
Expert sup
selfrespect


Masculin Nombre de messages : 2514
Localisation : trou noir
Date d'inscription : 14/05/2006

un peu de trigonomitrie Empty
MessageSujet: Re: un peu de trigonomitrie   un peu de trigonomitrie EmptyMar 31 Juil 2007, 22:16

jolie preuve bravo o0aminbe0o !!
Revenir en haut Aller en bas
Contenu sponsorisé





un peu de trigonomitrie Empty
MessageSujet: Re: un peu de trigonomitrie   un peu de trigonomitrie Empty

Revenir en haut Aller en bas
 
un peu de trigonomitrie
Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» Exo trigonomitrie !!!
» encore de la trigonomitrie

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum des amateurs de maths :: Lycée :: Groupe etudiants du T S M-
Sauter vers: