Bonsoir,
C_n+iS_n=e^(ia)+e^(i(a+b))+ ... +e^(i(a+nb))
=e^(ia)( 1+ e^(ib)+ ... +e^(inb)
Si e^(ib)=1, alors C_n+iS_n=(n+1)e^(ia)
Si e^(ib) #1, alors C_n+iS_n=e^(ia)( 1- e^(i(n+1)b))/(1-e^(ib))
C_n+iS_n=e^(ia)( e^(-ib/2)- e^(i(n+1/2)b))/(e^(-ib/2)-e^(ib/2))
C_n+iS_n=(ie^(ia-ib/2) -i e^(ia+i(n+1/2)b) ) / 2sin(b/2)
Donc C_n= (-sin(a-b/2) + sin(a+(n+1/2)b))/2sin(b/2)
et S_n= (cos(a-b/2) - cos(a+(n+1/2)b))/2sin(b/2)
AA+