différentielle: f(x+a)*f(-x)=f(a)
déduire de cette equation les resultats suivants:
-pour tt reel x:f(x)*f(-x)=1
-la fonction ne s'annule pas sur R
-pour tout reels x et a :f(x+a)=f(x)*f(a)
unicité: supposons qu'il existe 2 fonctions f1 et f2 répondant au probleme,cad que:f1(0)=1 et f1'(x)=kf1(x) pr tt x de R; f2(0)=1 et f2'(x)=kf2(x) pr tt x de R
Soit la fonction g=xa f1(x)*f2(-x)
1.démontrer que g est dérivable et calculer la dérivée
2.en deduire que,pr tt réel x:g(x)=1
3;En conclure que f1=f2
Merci bocoup a tous ceux qui voudront bien m'aider...