selfrespect Expert sup
Nombre de messages : 2514 Localisation : trou noir Date d'inscription : 14/05/2006
| Sujet: prouver limpossibilité du systeme suivant.!! Mer 20 Déc 2006, 21:03 | |
| salut prouver qu il nexistent pas de réels tel que x²+4yz+2z=0 x+2xy+2z²=0 2xy+y²+y+1=0 | |
|
bouali Maître
Nombre de messages : 87 Age : 51 Localisation : tanger maroc Date d'inscription : 12/02/2007
| Sujet: Re: prouver limpossibilité du systeme suivant.!! Sam 10 Mar 2007, 20:34 | |
| si x=0 alors z=0 mais y²+y+1=0 n a pas de sol reels si z=0 alors x=0 meme cas donc alors s il existe des solutions pour ce systeme x et z serons non nul de la 2eme equation on tire 2y+1=-2(z^3)/x on remplace dans la 1er equation o, trouve y=-1/2-[rac3(4)*z/4] avec rac3(4)=racing cubique de 4 mais en remplacant x par ça valeur dans la premiere equation on trouve y=-1/2 -[rac3(2)*z/2] ca qui est impossible sauf si z=0 or pour z=0 le systeme n as pas de solutions reels ( mais il y as des solutions complexe) a vous de faire le meme probleme avec les complexes | |
|
pco Expert sup
Nombre de messages : 678 Date d'inscription : 06/06/2006
| Sujet: Re: prouver limpossibilité du systeme suivant.!! Dim 11 Mar 2007, 10:41 | |
| Bonjour, - bouali a écrit:
- si x=0 alors z=0 mais y²+y+1=0 n a pas de sol reels
si z=0 alors x=0 meme cas donc alors s il existe des solutions pour ce systeme x et z serons non nul
OK - bouali a écrit:
- de la 2eme equation on tire 2y+1=-2(z^3)/x
on remplace dans la 1er equation o, trouve y=-1/2-[rac3(4)*z/4] NOK y = =-1/2-z/rac3(4) Et la suite du raisonnement est donc fausse (en particulier, il était anormal de trouver une contradiction en replongeant dans (1) un résultat tiré de (1) et (2). Il aurait fallu replonger dans (3). =========================== L'énoncé doit être faux car il existe au moins deux triplets répondant au problème : x=0,554432120688615, y=-0,720026532906517, z=0,349270349796721 x=-2,1262391962352, y=0,343798584209945, z=-1,33944676022414 -- Patrick | |
|
bouali Maître
Nombre de messages : 87 Age : 51 Localisation : tanger maroc Date d'inscription : 12/02/2007
| Sujet: Re: prouver limpossibilité du systeme suivant.!! Jeu 15 Mar 2007, 20:34 | |
| ce sont des solutions approchès , mais le systeme admet exactement deux triplet de reels qui sont solution j ai commis une faute dans la precedente demo voila les solutions x=-(rac3(2))[1+2y] et z=-rac3(4)/2[1+2y] on remplace dans la 3eme equation et on trouve une eqaution de second degres en y qui est [1-4rac3(2)]y² +[1-2rac3(2)]y+1=0 qui a deux solution reels puisque le descriminent est strictement positive donc pour chaque valeur de y on a une solution du systeme donc le systeme admet deux solutions | |
|
bouali Maître
Nombre de messages : 87 Age : 51 Localisation : tanger maroc Date d'inscription : 12/02/2007
| Sujet: Re: prouver limpossibilité du systeme suivant.!! Jeu 15 Mar 2007, 21:05 | |
| xz positive xy est negative vous voyez que ca est absurde !!!!!??? | |
|
Contenu sponsorisé
| Sujet: Re: prouver limpossibilité du systeme suivant.!! | |
| |
|