Forum des amateurs de maths
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.


Aide pour les futurs mathématiciens
 
AccueilAccueil  PortailPortail  RechercherRechercher  Dernières imagesDernières images  S'enregistrerS'enregistrer  Connexion  
-36%
Le deal à ne pas rater :
Aspirateur balai sans fil Dyson V8 Origin
254.99 € 399.01 €
Voir le deal

 

 Les suites , comment majorer cette suite ?

Aller en bas 
2 participants
AuteurMessage
hantiraok
Habitué



Masculin Nombre de messages : 14
Age : 30
Date d'inscription : 02/12/2011

Les suites , comment majorer cette suite ? Empty
MessageSujet: Les suites , comment majorer cette suite ?   Les suites , comment majorer cette suite ? EmptySam 03 Déc 2011, 20:33

Bonsoir , je bloque ds cette partie , De l aide svp :
0<alpha <1
(an) et Sn) sont deux suite tel que :
Sn= Sigma ak ( k varie de 0 à n) et an= ( 1-apha)^n
1) démontrez que an et Sn sont convergentes et précisez leur limite
j'ai réussi à travailler an mais Sn non
je bloque ici O <Sn <n+1
( j'ai trouvé que (an) est convergente et sa limite est O , pour Sn elle est croissante mais comment la majorer ? )
Revenir en haut Aller en bas
omarda
Féru



Nombre de messages : 46
Date d'inscription : 16/07/2006

Les suites , comment majorer cette suite ? Empty
MessageSujet: Re: Les suites , comment majorer cette suite ?   Les suites , comment majorer cette suite ? EmptyDim 04 Déc 2011, 12:45

Pour la suite (Sn) , il faut remarquer que c'est la somme de terme consecutives d'une suite géométrique de raison q=1-alpha
tu calcul d'abord la somme puis tu calcul la limte tu dois trouver 1/alpha je pense .
Revenir en haut Aller en bas
 
Les suites , comment majorer cette suite ?
Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» comment calculer cette primitive
» Comment calculer cette somme ???
» Les suites: La suite de Fibonacci.
» Etudier cette suite
» caculer cette suite

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum des amateurs de maths :: Lycée :: Groupe etudiants du T S M-
Sauter vers: