On remarque que: f(0,0) = 0 et f(1,0) = 2.
On remarque que: f(4,1) = 11 et f(1,3) = 11, donc f n'est pas une application injective.
On remarque que:
f(x,y) = 2k ==> y=0 (possible);
f(x,y) = 2k+1 ==> 2x+3y = 2k+1 ==> 2(x+y)+y = 2k+1 en prenant k = x+1 et y =1(possible);
f(x,y) = 1 ==> 2x+3y = 1 ==> 2(x+1)+1 ==> x = -1/2(faux).
Donc, f est surjective de N x N à N-{1}.