On a: sin(cos(x))<cos(sin(x))
<==> sin(cos(x)) - cos(sin(x))<0
<==> cos(Pi/2 -cos(x)) - cos(sin(x))<0
<==> -2[sin(Pi/4) -(1/2)(cos(x)-sin(x)).sin(Pi/4)+(1/2)(cos(x)-sin(x))]<0
<==>[sin(Pi/4) -(1/2)(cos(x)-sin(x)).sin(Pi/4)+(1/2)(cos(x)-sin(x))]>0
Or: l sin(x)-cos(x) l = l √2.sin(x-Pi/4) l ≤ √2 < Pi/2, le résultat en découle....