Forum des amateurs de maths
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.


Aide pour les futurs mathématiciens
 
AccueilAccueil  PortailPortail  RechercherRechercher  Dernières imagesDernières images  S'enregistrerS'enregistrer  Connexion  
Le deal à ne pas rater :
Code promo Nike : -25% dès 50€ d’achats sur tout le site Nike
Voir le deal

 

 Problème de semaine A.2

Aller en bas 
2 participants
AuteurMessage
radouane_BNE
Modérateur
radouane_BNE


Masculin Nombre de messages : 1488
Localisation : Montréal
Date d'inscription : 11/01/2006

Problème de semaine A.2  Empty
MessageSujet: Problème de semaine A.2    Problème de semaine A.2  EmptySam 02 Mar 2013, 17:32

Salut,

J'ai mal tapé l'énoncé, mais j'ai maintenu cette version pour permettre à plus de monde de participer.

Solution :

Il suffit de remarque que pour tout x positif x+1/x >=2 pour voir que le produit à droite est supérieur à 16>5. Par conséquence, il n'existe pas de solution.



Réponses correctes:

J'ai reçu 4 solutions correctes.

galillee56
abdelkrim-amine
nmo
Humber

Félicitations.
Revenir en haut Aller en bas
Humber
Expert grade2



Masculin Nombre de messages : 310
Age : 27
Date d'inscription : 10/10/2012

Problème de semaine A.2  Empty
MessageSujet: Re: Problème de semaine A.2    Problème de semaine A.2  EmptySam 02 Mar 2013, 17:42

Désolé mais dans l'énoncé on parlait d'entiers mais pas d'indication si on travaille sur IN ou Z .

Parce que là vous avez traité le cas où ils sont tous positifs.

Qu'est ce que vous voulez dire par : j'ai maintenu cette version

Amicalement Smile
Revenir en haut Aller en bas
radouane_BNE
Modérateur
radouane_BNE


Masculin Nombre de messages : 1488
Localisation : Montréal
Date d'inscription : 11/01/2006

Problème de semaine A.2  Empty
MessageSujet: Re: Problème de semaine A.2    Problème de semaine A.2  EmptySam 02 Mar 2013, 17:55

Pas besoin qu'on se vouvoie^^

Tu as tout à fait raison, je voulais dire par entier IN, mais sinon je poste ta solution car elle traite aussi le cas négatif.

L'équation est équivalente à :

(a²+1)(b²+1)(c²+1)(d²+1)=5abcd
==> (a²+1)|5abcd et (b²+1)|5abcd et (c²+1)|5abcd et (d²+1)|5abcd
-Si a ou b ou c ou d est impair alors on obtient qu'un nombre pair divise un impair ce qui est impossible (Puisque (a²+1)|5abcd <==> Il existe un k entier tel que 5abcd=k(a²+1), or puisque a²+1 est pair alors k(a²+1) est pair, impossible puisque 5abcd est impair ) .
Conclusion : a pair, b pair , c pair, et d pair ( Simple raisonnement par l'absurde )

-Si a, b, c et d sont pairs on remarque que 5abcd est pair alors que (a²+1), (b²+1),(c²+1) et (d²+1) sont impairs ==> (a²+1)(b²+1)(c²+1)(d²+1) est impair ce qui nous fournit une deuxième contradiction.

On conclue donc que l'équation n'admet pas de solution entière.



La version correcte que je voulais proposer est de résoudre l'équation

(1+1/a)(1+1/b)(1+1/c)(1+1/d)=5

Voilà !
Revenir en haut Aller en bas
Contenu sponsorisé





Problème de semaine A.2  Empty
MessageSujet: Re: Problème de semaine A.2    Problème de semaine A.2  Empty

Revenir en haut Aller en bas
 
Problème de semaine A.2
Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» Problème de semaine I.2
» problème N°50 de la semaine (09/10/2006-15/10/2006)
» Problème de semaine C.2
» problème N°61 de la semaine (25/12/2006-31/12/2006)
» problème N°34 de la semaine (19/06/2006-25/06/2006 )

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum des amateurs de maths :: Annonces - News - Les Régles à réspectées :: Annonces - News-
Sauter vers: