Forum des amateurs de maths
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.


Aide pour les futurs mathématiciens
 
AccueilAccueil  PortailPortail  RechercherRechercher  Dernières imagesDernières images  S'enregistrerS'enregistrer  Connexion  
-20%
Le deal à ne pas rater :
Drone Dji DJI Mini 4K (EU)
239 € 299 €
Voir le deal

 

 un bon exercice d'arithmetique 2

Aller en bas 
2 participants
AuteurMessage
messager of ark
Féru
messager of ark


Nombre de messages : 35
Date d'inscription : 25/06/2007

un bon exercice d'arithmetique 2 Empty
MessageSujet: un bon exercice d'arithmetique 2   un bon exercice d'arithmetique 2 EmptyVen 29 Mai 2009, 11:05

slt.voila un petit exo que j'espere que vous allez aimer.ça porte sur les nombres de Fermat.
1-Vn£N on pose F(n)=1+2^(2^n)).
a-ecrivez F(0)-F(1)-...-F(4) en base 10.
b-determinez le nombre de nombres de F(9) en base 10.
c-ecriver F(9) en base 2.
2-a-determiner le nombre unité de F(n) en base 10.
b-demontrer que 5*2^7=-1[641] et 2^4=-5^4[641] et F(5) est divisible par 641.
3-a-demontrer Vn£N Vk£N* 1+(F(n)-1)^(2^k)=F(n+k)
b-demontrer que F(n+k)=2[F(n)].
c-deduire que V(m,n)£N.N F(n) ^ F(m)=1.
4-deduire qu'il existe une infinté de nombres premiers.
5-est ce que tout les F(n) sont premiers?
sinon est ce qu'il ya des nombres premiers parmis les F(n)?
Revenir en haut Aller en bas
ayoub91
Habitué
ayoub91


Masculin Nombre de messages : 12
Age : 33
Localisation : Meknès
Date d'inscription : 10/04/2009

un bon exercice d'arithmetique 2 Empty
MessageSujet: Re: un bon exercice d'arithmetique 2   un bon exercice d'arithmetique 2 EmptySam 06 Juin 2009, 23:44

trooop classique,ce sont les nombres de fermat
Revenir en haut Aller en bas
 
un bon exercice d'arithmetique 2
Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» exo darithmetique
» un exercice d'olympiade avec des petit exercice pour le faci
» exercice
» UN EXERCICE------------<help
» exercice

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum des amateurs de maths :: Lycée :: Groupe etudiants du T S M-
Sauter vers: