Forum des amateurs de maths
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.


Aide pour les futurs mathématiciens
 
AccueilAccueil  PortailPortail  RechercherRechercher  Dernières imagesDernières images  S'enregistrerS'enregistrer  Connexion  
-35%
Le deal à ne pas rater :
-35% sur la machine à café Expresso Delonghi La Specialista Arte
359.99 € 549.99 €
Voir le deal

 

 exo olympiade !!

Aller en bas 
+4
Azerty1995
yasserito
majdouline
hmima
8 participants
AuteurMessage
hmima
Maître
hmima


Masculin Nombre de messages : 73
Age : 29
Localisation : Las-Noches
Date d'inscription : 22/09/2007

exo olympiade  !! Empty
MessageSujet: exo olympiade !!   exo olympiade  !! EmptySam 06 Juin 2009, 20:09

Saluut les amis !
on a :
a et b deux nombres réels positives
montrer que :
(a(b+a))²+(b(a+b))²=8a²b²




allez reveillez vous le forum est en congéé ou quoi
Revenir en haut Aller en bas
hmima
Maître
hmima


Masculin Nombre de messages : 73
Age : 29
Localisation : Las-Noches
Date d'inscription : 22/09/2007

exo olympiade  !! Empty
MessageSujet: Re: exo olympiade !!   exo olympiade  !! EmptySam 06 Juin 2009, 20:12

auuuh dsl faute de tape c'est:



(a(b+a))²+(b(a+b))²>=8a²b²
Revenir en haut Aller en bas
majdouline
Expert sup
majdouline


Féminin Nombre de messages : 1151
Age : 31
Localisation : Ø
Date d'inscription : 04/01/2009

exo olympiade  !! Empty
MessageSujet: Re: exo olympiade !!   exo olympiade  !! EmptySam 06 Juin 2009, 22:40

prenez le fait que:
x²+y²≥2xy (pour tous reels x et y)
et que (m+n)²≥4mn (pour tous réels m et n)
@+
Revenir en haut Aller en bas
hmima
Maître
hmima


Masculin Nombre de messages : 73
Age : 29
Localisation : Las-Noches
Date d'inscription : 22/09/2007

exo olympiade  !! Empty
MessageSujet: Re: exo olympiade !!   exo olympiade  !! EmptySam 06 Juin 2009, 23:33

ouééé c sa je veut que les colllegien le trouve !!


suffit po de donner la maniere fo faire lexoo allé les collegien vs etes rare ou koii?
Revenir en haut Aller en bas
yasserito
Expert sup



Masculin Nombre de messages : 615
Age : 29
Localisation : Maroc
Date d'inscription : 11/07/2009

exo olympiade  !! Empty
MessageSujet: salut   exo olympiade  !! EmptySam 11 Juil 2009, 23:08

je croi ke jai trouve la solution
(a(a+b))²+(b(a+b))²=a²(a+b)²+b²(a+b)²=(a+b)²(a²+b²)
on sai ke a²+b²>=2ab
et ke (a+b)²>=4ab
ca ve dire ke (a²+b²)(a+b)²>=8a²b²
alors...
Revenir en haut Aller en bas
yasserito
Expert sup



Masculin Nombre de messages : 615
Age : 29
Localisation : Maroc
Date d'inscription : 11/07/2009

exo olympiade  !! Empty
MessageSujet: Re: exo olympiade !!   exo olympiade  !! EmptySam 11 Juil 2009, 23:09

.


Dernière édition par yasserito le Lun 27 Déc 2010, 20:51, édité 1 fois
Revenir en haut Aller en bas
yasserito
Expert sup



Masculin Nombre de messages : 615
Age : 29
Localisation : Maroc
Date d'inscription : 11/07/2009

exo olympiade  !! Empty
MessageSujet: Re: exo olympiade !!   exo olympiade  !! EmptySam 11 Juil 2009, 23:10

.


Dernière édition par yasserito le Lun 27 Déc 2010, 20:50, édité 1 fois
Revenir en haut Aller en bas
Azerty1995
Expert grade2
Azerty1995


Féminin Nombre de messages : 345
Age : 29
Date d'inscription : 28/01/2010

exo olympiade  !! Empty
MessageSujet: Re: exo olympiade !!   exo olympiade  !! EmptySam 30 Jan 2010, 13:52

a²(b+a)²-4a²b²=a²((b+a)²-4b²)=a²(b²+a²+2ab-4b²=a²(3b²+a²+2ab)
a²(3b²+a²+2ab)positif alors a²(b+a)²-4a²b² positif alors (a(b+a))² -4a²b² est positif alors 4a²b²=<a²(a+b)² on fait la meme chose 8a²b²=<a²(b+a)+b²(a+b)


Dernière édition par Azerty1995 le Sam 08 Mai 2010, 16:55, édité 1 fois
Revenir en haut Aller en bas
rebbani yousra
Maître
rebbani yousra


Féminin Nombre de messages : 70
Age : 29
Localisation : le monde des shinigamis
Date d'inscription : 28/10/2009

exo olympiade  !! Empty
MessageSujet: Re: exo olympiade !!   exo olympiade  !! EmptyMar 23 Fév 2010, 12:08

je participe a celui d 'el jadida,le 5 mars,je me demande bien comment ça se passera^^
Revenir en haut Aller en bas
elhajeb
Maître
elhajeb


Féminin Nombre de messages : 98
Age : 29
Localisation : monde authentique
Date d'inscription : 10/01/2010

exo olympiade  !! Empty
MessageSujet: Re: exo olympiade !!   exo olympiade  !! EmptyJeu 25 Fév 2010, 19:15

slt YOUSRA je viens de passer le premier te je vai passer le deuxieme en mars on avait suffisement letemps c'etait facile mais je te conseil, il faut po avoir peur se concentrer et englober chaque exercice pour l'exo j'ai vu c'est facile je vais presnter un similaire[/u] study
Revenir en haut Aller en bas
yasserito
Expert sup



Masculin Nombre de messages : 615
Age : 29
Localisation : Maroc
Date d'inscription : 11/07/2009

exo olympiade  !! Empty
MessageSujet: Re: exo olympiade !!   exo olympiade  !! EmptyDim 19 Sep 2010, 13:14

ben je veux une solution pour cette exercice svp
(P): qu'il que soit x de IR et y de IR : lxl<1 , lyl<1 => l (x+y)/(1+xy) l <1
prouver cette (istilzam) ou bien prouver que c'est vrai!
urgent svp! Question
Revenir en haut Aller en bas
yasserito
Expert sup



Masculin Nombre de messages : 615
Age : 29
Localisation : Maroc
Date d'inscription : 11/07/2009

exo olympiade  !! Empty
MessageSujet: Re: exo olympiade !!   exo olympiade  !! EmptyDim 26 Sep 2010, 11:28

svp comment prouver que la racine de (n/n+1) n'appartient pas a Q
Revenir en haut Aller en bas
nmo
Expert sup



Masculin Nombre de messages : 2249
Age : 31
Localisation : Elgara
Date d'inscription : 29/10/2009

exo olympiade  !! Empty
MessageSujet: Re: exo olympiade !!   exo olympiade  !! EmptyDim 26 Sep 2010, 17:34

yasserito a écrit:
ben je veux une solution pour cette exercice svp
(P): qu'il que soit x de IR et y de IR : lxl<1 , lyl<1 => l (x+y)/(1+xy) l <1
prouver cette (istilzam) ou bien prouver que c'est vrai!
urgent svp! Question
On a |x|<1.
Donc x²<1.
Donc 0<1-x².
De même, on aura 0<1-y².
En multipliant, on trouve 0<(1-x²)(1-y²).
Donc 0<1-x²-y²+(xy)².
Donc x²+y²<1+(xy)².
Donc x²+y²+2xy<1+(xy)²+2xy.
Donc (x+y)²<(1+xy)².
Donc |x+y|<|1+xy|.
Donc |(x+y)/(1+xy)|<1.
CQFD.
Revenir en haut Aller en bas
nmo
Expert sup



Masculin Nombre de messages : 2249
Age : 31
Localisation : Elgara
Date d'inscription : 29/10/2009

exo olympiade  !! Empty
MessageSujet: Re: exo olympiade !!   exo olympiade  !! EmptyDim 26 Sep 2010, 17:36

yasserito a écrit:
svp comment prouver que la racine de (n/n+1) n'appartient pas a Q
Tu as eu la réponse dans une autre rubrique.
Sache qu'il faut choisir la rubrique approprié pour avoir une réponse rapidement.
Au plaisir.
Revenir en haut Aller en bas
elidrissi
Maître
elidrissi


Masculin Nombre de messages : 258
Age : 27
Localisation : maths land
Date d'inscription : 03/06/2012

exo olympiade  !! Empty
MessageSujet: Re: exo olympiade !!   exo olympiade  !! EmptyDim 03 Juin 2012, 20:03

yasserito a écrit:
ben je veux une solution pour cette exercice svp
(P): qu'il que soit x de IR et y de IR :lxl<1 , => l (x+y)/(1+xy) l <1
prouver cette (istilzam) ou bien prouver que c'est vrai!
urgent svp! Question

salut autre manière:
on a lxl<1
d ou -1<x<1
lyl<1
d ou on a -1<y<1
alors 2>x+y>-2
xy<1
xy+1<1+1
xy+1<2
1/xy+1>1/2
(x+y)/(xy+1)>-1
l(x+y)/(xy+1)l<1

chuis qu en 3eme année du collège mais je "crois" que c'est juste
Revenir en haut Aller en bas
Contenu sponsorisé





exo olympiade  !! Empty
MessageSujet: Re: exo olympiade !!   exo olympiade  !! Empty

Revenir en haut Aller en bas
 
exo olympiade !!
Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» exo olympiade
» exo olympiade
» olympiade
» olympiade tc
» exo olympiade tc 4

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum des amateurs de maths :: Collège :: Espace défi-
Sauter vers: