Forum des amateurs de maths
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.


Aide pour les futurs mathématiciens
 
AccueilAccueil  PortailPortail  RechercherRechercher  Dernières imagesDernières images  S'enregistrerS'enregistrer  Connexion  
-25%
Le deal à ne pas rater :
-25% Samsung Odyssey G9 G95C – Ecran PC Gamer 49″ Incurvé
599 € 799 €
Voir le deal

 

 une factorisation trop difficile besoin d'aide

Aller en bas 
2 participants
AuteurMessage
chamitos007
Maître
chamitos007


Féminin Nombre de messages : 163
Age : 30
Date d'inscription : 27/12/2009

une factorisation trop difficile besoin d'aide Empty
MessageSujet: une factorisation trop difficile besoin d'aide   une factorisation trop difficile besoin d'aide EmptyMar 09 Fév 2010, 11:13

factorisez
x a la puissance de 8+x +1
aussi x ala puissance de 10+x al puissance de 5+1
aussi determinez n de l'ensemble N on racine1+5 a lapuissance n +6 ala puissance de n +11 ala puissance n tous cela appartient a l'ensemble N
svp c'est urg
Revenir en haut Aller en bas
nmo
Expert sup



Masculin Nombre de messages : 2249
Age : 31
Localisation : Elgara
Date d'inscription : 29/10/2009

une factorisation trop difficile besoin d'aide Empty
MessageSujet: Re: une factorisation trop difficile besoin d'aide   une factorisation trop difficile besoin d'aide EmptyVen 12 Fév 2010, 12:27

Pour le troisième exercice:
L'exercice nous demandait de trouver tous les nombres n de IN tel que V(1+5^n+6^n+11^n) £ IN.
On pose A=rac(1+5^n+6^n+11^n).
Donc A²=1+5^n+6^n+11^n.
Pour n=0.
On a A²=1+5^0+6^0+11^0
Donc A²=1+1+1+1.
Donc A²=4.
Donc 0 est une réponse.
Pour n n'égale pas 0
Si A avait dans les nombres d'unités 1,
Alors A² aurait 1.
Si A avait dans les nombres d'unités 2,
Alors A² aurait 4.
Si A avait dans les nombres d'unités 3,
Alors A² aurait 9
Si A avait dans les nombres d'unités 4,
Alors A² aurait 6 (4²=16)
Si A avait dans les nombres d'unités 5,
Alors A² aurait 5 (5²=25)
Si A avait dans les nombres d'unités 6,
Alors A² aurait 6 (6²=36)
Si A avait dans les nombres d'unités 7,
Alors A² aurait 9 (7²=49)
Si A avait dans les nombres d'unités 8,
Alors A² aurait 4 (8²=64)
Si A avait dans les nombres d'unités 9,
Alors A² aurait 1 (9²=81)
Donc un carré parfait aura dans le chiffre des unités soit: 1, 4, 5, 6 ou 9.
On a le chiffre d'unités de 5^n est 5 pour tout n de IN*.
On a le chiffre d'unités de 6^n est 6 pour tout n de IN*.
On a le chiffre d'unités de 11^n est 1 pour tout n de IN*.
Donc le chiffre d'unités de 5^n+6^n+11^n+1 est le chiffre d'unités de
(5+6+1+1=13) donc c'est le 3.
Donc le chiffre d'unités de A² est de 3.
Et puisque 3 n'est pas un chiffre d'un carré parfait , on a A² n'est pas un carré parfait pour tout N de IN*.
Donc le seul cas où A² est un carré parfait et A £ IN est quand n=0
est ce correct?


Dernière édition par nmo le Lun 31 Mai 2010, 17:31, édité 3 fois
Revenir en haut Aller en bas
nmo
Expert sup



Masculin Nombre de messages : 2249
Age : 31
Localisation : Elgara
Date d'inscription : 29/10/2009

une factorisation trop difficile besoin d'aide Empty
MessageSujet: Re: une factorisation trop difficile besoin d'aide   une factorisation trop difficile besoin d'aide EmptyVen 12 Fév 2010, 16:27

Pour le premier et le deuxième:
x^8+x+1=une factorisation trop difficile besoin d'aide Gif
x^10+x^5+1=une factorisation trop difficile besoin d'aide Gif
est ce correct?


Dernière édition par nmo le Lun 31 Mai 2010, 17:30, édité 1 fois
Revenir en haut Aller en bas
chamitos007
Maître
chamitos007


Féminin Nombre de messages : 163
Age : 30
Date d'inscription : 27/12/2009

une factorisation trop difficile besoin d'aide Empty
MessageSujet: Re: une factorisation trop difficile besoin d'aide   une factorisation trop difficile besoin d'aide EmptyMer 17 Fév 2010, 12:45

bein oui nmo merci biennnnnnnnn et infiniment et pour ce forum merveilleux est ce que vraiment ta 15 ans et tu denuides tous ces probles est ce vrai ?
si c'était bein tu es un génie de maths hh
Revenir en haut Aller en bas
Contenu sponsorisé





une factorisation trop difficile besoin d'aide Empty
MessageSujet: Re: une factorisation trop difficile besoin d'aide   une factorisation trop difficile besoin d'aide Empty

Revenir en haut Aller en bas
 
une factorisation trop difficile besoin d'aide
Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» encore besoin daide
» Own , pas trop difficile
» Factorisation
» exo trop difficile (logique) still pas de reponse
» exo de factorisation

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum des amateurs de maths :: Lycée :: Seconde - Tronc commun-
Sauter vers: