on a a+b=1 => b=1-a
on a (1+1/a)(1+1/b)>= 9 ==> (1+1/a)(1+1/1-a)>= 9
==> 1+(1/a) + (1/1-a) +(1/a(1-a))
==> (a²-a-2)/(a²-a)
f(a) = (a²-a-2)/(a²-a)
etudier la monotomie de f sur ]0.1[
f(a)>=9 لنبين أن
g(a)= (a-2)/a et h (a)= a²-a
goh(a) = f(a)
[img=https://2img.net/r/ihimizer/img80/3679/sanstitrelb1.th.jpg]
donc f(a)>=9