Sn=sigma k=1 jusq'ua k=n de U(k-1)/2^k
=(1/rac5)sigma k=0 jusq'ua k=n (a^k/2^k-b^k/2^k)
=(1/rac5)(1-(a/2)^(n+1))/(1-a/2)-(1/rac5)(1-(b/2)^(n+1))/(1-b/2)
Mais |a/2|<1 et |b/2|<1
==> lim Sn=(2/rac5) (1/(1-a) -1/(1-b))
a+b=1 et ab=-1
==> 1/(1-a)=1/b=-a et 1/(1-b)=1/a=-b
==> 1/(1-a) -1/(1-b)=b-a=-rac5
==> lim Sn=-2