Soit d(x) la distance de x de l'ensemble Z , ce qui est la plus petitedistance entre x et p de Z :
d(x)=min|x-p|
1) demontrer que pour tout x de R. 0<d(x)<1/2
2)demontre que d(x)=d(-x)
3)demontrer que la fonction d est periodique de periode 1
4)demontrer que : pour 0<x<1/2. d(x)=x
Pour 1/2<x<1. d(x)=1-x
5) etudier la continuite de D dans R
6) montrer que {d(nx) / n de N*} est fini si et seulment si x rationnel
pour x non-rationnel , m=d(x) , demontrer que. 0<m<1/2 et d(nx) = d(nm) , n de N*