otherwise, sin(2π/7) = 2sin(π/7)cos(π/7) and sin(4π/7) = 2sin(2π/7)cos(2π/7)= 2sin(2π/7).[cos²(π/7) -sin²(π/7)], Therefore sin(π/7) +sin(2π/7) +sin(4π/7) = sin(π/7).[1 +2cos(π/7).(1+2[cos²(π/7) -sin²(π/7)])] = sin(π/7).(1 +2cos(π/7).[4cos²(π/7) -1]) =sin(π/7).[1 -2cos(π/7) +8cos³(π/7)]