Forum des amateurs de maths
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.


Aide pour les futurs mathématiciens
 
AccueilAccueil  PortailPortail  RechercherRechercher  Dernières imagesDernières images  S'enregistrerS'enregistrer  Connexion  
-25%
Le deal à ne pas rater :
PC Portable Gamer 16,1” HP Victus 16 – 16 Go /512 Go
749.99 € 999.99 €
Voir le deal

 

 5 exos en applications !

Aller en bas 
3 participants
AuteurMessage
rim hariss
Expert sup
rim hariss


Féminin Nombre de messages : 524
Age : 33
Date d'inscription : 17/11/2006

5 exos en applications ! Empty
MessageSujet: 5 exos en applications !   5 exos en applications ! EmptyMar 06 Nov 2007, 16:25

slt tt le monde,
étant donné que les applications est un chapitre un peu difficile, en voila quelques exos:
1)
soit f l'application de IN* vers IN* tel que
f(n)=E(1 + 1/2 + 1/3 +...+1/n) / E(x) est la partie entière de x.
démontrez que f est une subjection.
2)on considère l'ensemble A_n={1 , 1/2 ,...,1/n} tel que n>=3
on considère l'application f de [0,1] vers [0,1/4] tel que f(x) est la distance entre x et le plus prêt élément de A de x.
ce qui veut dire f(x)=/x-a/ telque a est le plus pret nombre appartenant a A_n de x, il peut etre plus grand que lui ou plus petit que lui.
exemple f(0.333)=/0.333-1/3 / et f(1)=/1-1/
est ce que f est injective ? est ce que f est subjective?
3)trouvez toutes les applications f de IR vers IR tel que:
(quelque soit x de IR): f(3x)=2f(x)
4) soit f une application de IN vers IN tel que:
(quelque soit n de IN): f(n+1)>f(f(n))
qu'est ce que peut-on dire de l'application f?
5) E et F sont deux ensembles et f est une application de E vers F et g une application de F vers E.
démontre qu'il existe un ensemble A de E et B un ensemble de F tel que:
B=f(A) et A°=f(B°) tel que A° est A barre et B° est B barre.
(soit C=(g(F))°) et h=gof, on pose A l'intercection de tous les ensembles partiels M de E tel que CUh(M) inclus dans M)

je crois que ça suffit pour vous, et celui qui réussira à les faire tous le premier sera nommé champion des applications! (je rigole Surprised ), allez action réaction! (werewna 7ennet yedkom!)


Dernière édition par le Mar 06 Nov 2007, 17:46, édité 1 fois
Revenir en haut Aller en bas
L
Expert sup
L


Masculin Nombre de messages : 1558
Age : 33
Date d'inscription : 03/09/2007

5 exos en applications ! Empty
MessageSujet: Re: 5 exos en applications !   5 exos en applications ! EmptyMar 06 Nov 2007, 17:16

rim hariss a écrit:
slt tt le monde,
étant donné que les applications est un chapitre un peu difficile, en voila quelques exos:
1)
soit f l'application de IN* vers IN* tel que
f(n)=E(1 + 1/2 + 1/3 +...+1/n) / E(x) est la partie entière de x.
démontrez que f est une subjection.
2)on considère l'ensemble A_n={1 , 1/2 ,...,1/n} tel que n>=3
on considère l'application f tel que f(x) est la distance entre x et le plus prêt élément de A de x.
est ce que f est injective ? est ce que f est subjective?
3)trouvez toutes les applications f de IR vers IR tel que:
(quelque soit x de IR): f(3x)=2f(x)
4) soit f une application de IN vers IN tel que:
(quelque soit n de IN): f(n+1)>f(f(n))
qu'est ce que peut-on dire de l'application f?
5) E et F sont deux ensembles et f est une application de E vers F et g une application de F vers E.
démontre qu'il existe un ensemble A de E et B un ensemble de F tel que:
B=f(A) et A°=f(B°) tel que A° est A barre et B° est B barre.
(soit C=(g(F))°) et h=gof, on pose A l'intercection de tous les ensembles partiels M de E tel que CUh(M) inclus dans M)

je crois que ça suffit pour vous, et celui qui réussira à les faire tous le premier sera nommé champion des applications! (je rigole Surprised ), allez action réaction! (werewna 7ennet yedkom!)
ca c'est pour quoi?
et h'ai d'autres question qui m'empeche de continuer^^
trouver toutes les fonctions f est ce qu'on trouve f(x) on fonction de fquechose ou bien qu'avec des x et des nombres?
l'element le plus pres de a de x ca veut dire celui qui vient directement apres?et est ce que n et x sont des reels ou des entiers?
que peutr t on dire de f j'ai pas bien compris ca parce qu'on peux dire beaucoup de choses mais que veux tu exactement?
Revenir en haut Aller en bas
abdelbaki.attioui
Administrateur
abdelbaki.attioui


Masculin Nombre de messages : 2564
Localisation : maroc
Date d'inscription : 27/11/2005

5 exos en applications ! Empty
MessageSujet: Re: 5 exos en applications !   5 exos en applications ! EmptyMar 06 Nov 2007, 17:41

Toutes ces questions sont déjà posées . Chercher...
Revenir en haut Aller en bas
https://mathsmaroc.jeun.fr/
rim hariss
Expert sup
rim hariss


Féminin Nombre de messages : 524
Age : 33
Date d'inscription : 17/11/2006

5 exos en applications ! Empty
MessageSujet: Re: 5 exos en applications !   5 exos en applications ! EmptyMar 06 Nov 2007, 17:42

Citation :
ca c'est pour quoi?
lécriture en rouge est une indication pour t'aider à résourdre l'exo, tu peux l'utiliser ou ne pas l'utuliser, comme tu veux.
Citation :
trouver toutes les fonctions f est ce qu'on trouve f(x) on fonction de fquechose ou bien qu'avec des x et des nombres?
je ne sais pas vraiment pour la détermination de f(x), normalement quand on détermine une fonction f(x) on la détermine en fonction de x.
Citation :
l'element le plus pres de a de x ca veut dire celui qui vient directement apres?et est ce que n et x sont des reels ou des entiers?
ceci est de ma faute j'ai oublié de préciser l'emsemble de départ et l'ensemble d'arrivée; c corrigé dans l'énoncé. et j'ai aussi bien expliqué le plus pret de An de x.
Citation :
que peutr t on dire de f j'ai pas bien compris ca parce qu'on peux dire beaucoup de choses mais que veux tu exactement?
est ce que f est injective est ce qu'elle est subjective est ce qu'elle est bijective ? est ce qu'elle est croissante , décroissante?...
Revenir en haut Aller en bas
L
Expert sup
L


Masculin Nombre de messages : 1558
Age : 33
Date d'inscription : 03/09/2007

5 exos en applications ! Empty
MessageSujet: Re: 5 exos en applications !   5 exos en applications ! EmptyMar 06 Nov 2007, 17:45

ooooook merci
Revenir en haut Aller en bas
rim hariss
Expert sup
rim hariss


Féminin Nombre de messages : 524
Age : 33
Date d'inscription : 17/11/2006

5 exos en applications ! Empty
MessageSujet: Re: 5 exos en applications !   5 exos en applications ! EmptyMar 06 Nov 2007, 17:48

vous savez pas monsieur abdelbaki.attioui ou exactement? dans quelle rubrique au moins? si qu'elqu'un d'entre vous sait où prière qu'ilk poste le lien ici,
Revenir en haut Aller en bas
L
Expert sup
L


Masculin Nombre de messages : 1558
Age : 33
Date d'inscription : 03/09/2007

5 exos en applications ! Empty
MessageSujet: Re: 5 exos en applications !   5 exos en applications ! EmptyMar 06 Nov 2007, 18:18

2/f n'est pas injective
f(0)=f(1)=0 mais 0#1
f surjectif parcequon a
qqsoit y de [0.1/4] il existe un x tel que x=y²+a compris entre [0.1]
Revenir en haut Aller en bas
rim hariss
Expert sup
rim hariss


Féminin Nombre de messages : 524
Age : 33
Date d'inscription : 17/11/2006

5 exos en applications ! Empty
MessageSujet: Re: 5 exos en applications !   5 exos en applications ! EmptyMar 06 Nov 2007, 22:44

Citation :

2/f n'est pas injective
f(0)=f(1)=0 mais 0#1
f surjectif parcequon a
qqsoit y de [0.1/4] il existe un x tel que x=y²+a compris entre [0.1]

5 exos en applications ! _
oui f n'est pas injective mais l'exemple que tu as donné est faux car f(0)=/ 0-1/n /= 1/n
mais on a f(1/2)=f(1)=0 et 1/2 n'égale pas 1.
pour la subjection je ne sais pas comment t'as fait pour trouver x=y²+a
on a /x-a/=y donc (x-a)²=y² et non x-a=y².
moi j'ai trouvé que f n'est pas subjective mais je vais pas poster mnt, j'attendrai les réponses des autres.
Revenir en haut Aller en bas
L
Expert sup
L


Masculin Nombre de messages : 1558
Age : 33
Date d'inscription : 03/09/2007

5 exos en applications ! Empty
MessageSujet: Re: 5 exos en applications !   5 exos en applications ! EmptyMer 07 Nov 2007, 12:40

pour mon contre exempel est faux
0 est le plus proche elemnt de A de 0 et pour 1 c 1
je vois pas pourquoi c'est faux
pour la subjectivite j'ai commis une petite erreur de concentration qui a toufait foireje reverrai ca
Revenir en haut Aller en bas
rim hariss
Expert sup
rim hariss


Féminin Nombre de messages : 524
Age : 33
Date d'inscription : 17/11/2006

5 exos en applications ! Empty
MessageSujet: Re: 5 exos en applications !   5 exos en applications ! EmptyJeu 08 Nov 2007, 19:31

t'a dit:
Citation :
0 est le plus proche elemnt de A de 0 et pour 1 c 1
et cela est faux car 0 n'appartient pas a An
(An=(1,1/2,1/3,....1/n) et ces nombres sont tous non nuls.)
Revenir en haut Aller en bas
Contenu sponsorisé





5 exos en applications ! Empty
MessageSujet: Re: 5 exos en applications !   5 exos en applications ! Empty

Revenir en haut Aller en bas
 
5 exos en applications !
Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» exo d'applications
» Exos applications naré maradouni^^
» Help !!!!! Applications
» Les Applications
» Applications.

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum des amateurs de maths :: Lycée :: Première-
Sauter vers: