Salut
1/f(M)=3<--->MA.MB=3 supposons que I est le milieu de I
<--->(MI+IA).(MI+IB)=3
<--->MI²+MI.(IA+IB)=3-IA.IB et IA+IB=0 et IA.IB=-1
<--->MI²=4
donc MI=2 (on de dira pas ou -2 car ici MI est une distance
)
Donc l'ensemble des points M du plan (P) tel que f(M)=3 est le cercle de centre I et de rayon r=2
donc comme il y a une infinité de points qui se trouve sur le cercle,l'application f n'est pas injective.
2)f(M)=-2<---->MI²=-2+1=-1
Impossible
donc comme 2 n'a pas d'antecedents par f,cette application n'est pas surjective
A++