Bonjour
Solution postée
voici la solution d"abdelbaki.attioui
Bonjour
On pose a=n-1, b=m-1, c=p-1 et d=r-1
==> 1=<a<b<c<d et (a+1)(b+1)(c+1)(d+1)=kabcd+1 avec k entier (k>=2).
==> k+1/abcd=(1+1/a)(1+1/b)(1+1/c)(1+1/d)
==> k+1/abcd=<(1+1/a)(1+1/(a+1))(1+1/(a+2))(1+1/(a+3))= (a+4)/a
==> k<1+4/a=<5
==> 2=<k=<4
si 4>=k>=3 ==> 2<4/a ==> a=1. Donc k=3 car pgcd(k,a+1)=pgcd(k,2)=1 (Bezout)
==> 2(b+1)(c+1)(d+1)=3bcd+1
==> 3+1/bcd=2(1+1/b)(1+1/c)(1+1/d)=<2(1+1/b)(1+1/(b+1))(1+1/(b+2))=2(b+3)/b
==> 3<2+6/b==> 2=a+1=<b=<5 , pgcd(3,b+1)=1 et pgcd(2,b)=1 ==> b=3
==> 8(c+1)(d+1)=9cd+1 ==> d(c-8 )=8c+7 et 9<8(1+1/c)(1+1/d)=<8(c+2)/c car c+1=<d
==> d(c-8 )=8c+7 , 8<c<16 , pgcd(9,c+1)=1 , pgcd(8,c)=1 et c-8 divise 8c+7
==> c=9 et d=(8c+7)/(c-8 )=79
==> (a,b,c,d)=(1,3,9,79)
si k=2 ==> a=<2 et pgcd(2,a+1)=1 ==> a=2
==> 3(b+1)(c+1)(d+1)=4bcd+1
==> 4+1/bcd=3(1+1/b)(1+1/c)(1+1/d)=<3(1+1/b)(1+1/(b+1))(1+1/(b+2))=3(b+3)/b
==> 4<3+9/b ==> 3=<b=<8 , pgcd(4,b+1)=1 et pgcd(4,b+1)=1==> b€{4,6,8}
si b=8 ==> 27(c+1)(d+1)=32cd+1
==> 27(c+1)(d+1)=32cd+1> 32cd
==> 32<27(1+1/c)(1+1/d)=<27(c+2)/c=27+54/c
==> 5<54/c ==> 9=b+1=<c =<10. Mais pgcd(3,c)=1 ==> c=10
==> 297(d+1)=320d+1 ==> 23d=296 pas de solution.
si b=6 ==> 21(c+1)(d+1)=24cd+1
==> 21(c+1)(d+1)=24cd+1> 24cd
==> 24<21(1+1/c)(1+1/d)=<21(c+2)/c=21+42/c
==> 3<42/c ==> 7=b+1=<c =<13. Mais pgcd(21,c)=1 et pgcd(24,c+1)=1 ==> c=10
==> 231(d+1)=240d+1 ==> 9d=230 pas de solution.
si b=4 ==> 15(c+1)(d+1)=16cd+1
==> d(c-15)=15c+14 et 15(c+1)(d+1)=16cd+1> 16cd
==> d(c-15)=15c+14 et 16<15(1+1/c)(1+1/d)=<15(c+2)/c=15+30/c
==> 1<30/c ==> 15<c =<29. Mais pgcd(15,c)=1 et pgcd(16,c+1)=1
==> c€{16,22,26,28} et c-15 divise 15c+14 ==> c=16 et d=(15c+14)/(c-15)=254
==> (a,b,c,d)=(2,4,16,254)
Donc (n,m,p,r)= (2,4,10,80) ou (3,5,17,255)
A+