Bonjour,
Solution postée.
voici la solution de pco
Bonjour,
Soit S(n,p) = sum_{k=1,n} (k-1)!/(k+p)!. On cherche S(2007,p).
S(n,p) = sum_{k=1,n} (k+p+1)(k-1)!/(k+p+1)!
= (p+1)sum_{k=1,n} (k-1)!/(k+p+1)! + sum_{k=1,n} (k)!/(k+p+1)!
= (p+1)S(n,p+1) + sum_{k=2,n+1} (k-1)!/(k+p)!
= (p+1)S(n,p+1) + S(n,p) - 1/(p+1)! + n!/(n+p+1)!
==> S(n,p+1) = 1/((p+1)(p+1)! - n!/((p+1)(n+p+1)!)
==> S(n,p) =(1/p! - n!/(n+p)!)/p
Donc la somme cherchée vaut (1/p! - 2007!/(2007+p)!)/p
--
Patrick
--
Patrick